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I. THE PROPOSED RESEARCH

The NIAC Ghost Imaging of Space Objects research program has been carried out at

the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011

to September 2012) and Phase II (October 2012 to September 2014). The research team

consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The

team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew

Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria

Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul

Nuñez of Collège de France & Observatoire de la Côte d’Azur; and technical support from

Victor White and Pierre Echternach of JPL. We also would like to thank Jay Falker, Jason

Derleth, Ron Turner, Katherine Reilly, and all of the NIAC team for continuous support,

advice and encouragement throughout the entire research effort.

A. Origins and motivation of this research

Development of innovative aerospace technologies is critical for our nation to meet its

goals to explore and understand the Earth, our solar system, and the universe. The spectac-

ular success of many recent NASA missions hinges on the extensive technological innovations

that NASA has been supporting for the past decades. To sustain this successful tradition

it is very important to identify and stimulate the scientific research that may turn into a

viable technology in the decades yet to come. Innovative low-TRL research stimulates the

growth of the scientific knowledge and enhances the technological capabilities in a way that

answers new questions and responds to new requirements. Such a research also helps find-

ing novel creative solutions to problems constrained by schedule and budget. Moreover, the

impact of this kind of research goes beyond the original area. A long-term advanced space

concepts and technology development program is likely to have multiple and diverse positive

outcomes.

The NASA OCT’s NIAC program which has sponsored this research effort is an example

of such a long-term technological investment. This program has a history of seeding the

research efforts that later turned into a great success. One of the most recent and spectacular

examples of such an early innovation sponsorship is the Kepler planetary detection research
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mission [1–3]. We use the achievements of this mission as benchmarks for our research.

Like the Kepler mission, our research lies in the area of observation astronomy. We aim

to improve the technical methods and approaches available in this area and directed to

investigation of such important space objects as exoplanets, asteroids, gravitational lenses,

gas and dust clouds, and others.

Direct intensity measurement, by an eye or a detector, has always been the foundation

of observation astronomy. Sometimes this technique is successfully complemented by other

types of measurements, for example those relying on intensity interferometry. The pioneering

application of intensity interferometric measurement in astronomy has been demonstrated by

Hanbury Brown and Twiss in 1960s [4]. These measurements involved only a pair of detectors

(coupled with telescopes) and were aimed at determining a star’s angular size. The success of

this approach caused a brief but powerful wake of interest to intensity interferometry in the

astronomy community. Unfortunately, further development of this technology was impeded

by the limitations of contemporary optical detectors and fast electronics, as well as by limited

computational power, for a few decades. Recently, however, the explosive progress in all

these underlying technology fields revived the practical interest in intensity-interferometric

imaging. It has been considered for imaging of solar spots, tidal and rotational distortions,

limb darkening and other stellar phenomena [5–11]. Even a space-deployable version of this

approach has been discussed [12].

Intensity correlation measurements proved to be also important in the area of science

extremely distant from astronomy: in quantum optics. In particular, photon coincidence

measurements have allowed for the study of nonclassical optical fields whose photons are

emitted as tightly correlated pairs, e.g. in a process of parametric down conversion. Para-

metrically produced photons are not only tightly correlated in time, but also in space, even

to the extent beyond possible in classical physics. (This phenomenon is one of the man-

ifestations of the quantum entanglement.) Such a spatial correlation between parametric

photons allows an observer to predict the “location” of one photon based on the observation

of the other with a better resolution than is possible in a direct intensity measurement. It

also enables a remarkable technique of optical imaging, called the “ghost imaging” [13].

Quantum world is usually associated with small size and low energy, and is believed to

be governed by laws often defying the common sense. Quantum systems make wonderful

objects for study, but rarely lend themselves as research tools in other areas of science and
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engineering. Any such event in the history had truly revolutionary value. A few relevant

examples are the laser, transistor, and superconductivity. It is therefore not surprising that

the quantum optical phenomena attracts great interest as potential instruments for science

and technology. The possibility to surpass the classical limits of optical resolution has been

suggested for use in microscopic imaging [14] and lithography [15, 16]. The unique features

of ghost imaging were proposed for spectroscopy [17, 18] and for the military surveillance [19]

applications. In this research we take a further step and consider a possibility for application

of ghost imaging (or speaking more generally, optical correlation imaging) in astronomy. We

expect this approach to enhance the capabilities of conventional observation astronomy, as

well as to create conceptually new capabilities.

B. Proposed approach in a nutshell

The term “ghost imaging” was coined in 1995 when an optical correlation measurement

using biphoton light from parametric down conversion crystal was used to observe an image

[13] or a diffraction pattern [20] of a mask placed in the signal channel by scanning a detector

in an empty idler channel. This image is obtained by a gated photon counting, with the

gating obtained by photon detections in the signal channel which lacks any spatial resolution,

as illustrated in Fig. 1.

Besides its significance for the field of quantum optics, the ghost imaging technique has

a few appealing practical advantages. Since no spatial resolution in the object channel

is required, a very primitive single-pixel optical sensor could be placed in this channel,

while the more advanced optics responsible for the image quality could be placed in the

reference channel. This could be convenient for imaging of hard-to-access objects. The

ghost imaging is especially beneficial for imaging the objects at “inconvenient” wavelengths,

such as far infrared, while the reference channel wavelength is visible [17]. Furthermore, the

coincidence measurement technique is more robust in the presence of the optical background

illumination. Finally, the possibility of surpassing the diffraction limit in ghost imaging has

been discussed. However here one should be careful to acknowledge that while the transverse

intensity correlation of parametric photons is not limited by by the signal or idler diffraction,

it is limited by the pump diffraction.

Despite these potential advantages, the first realization of ghost imaging was extremely
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FIG. 1: Simplified illustration of the original ghost imaging experiment [13]. A mask with letters

“UMBC” is placed in the object channel, where all light is collected by a “bucket detector”.

Nonetheless, an image is reconstructed by correlating this detector’s photo counts with those from

another detector, raster-scanning the empty reference channel. A sharp image is observed when a

modified thin lens equation is fulfilled: 1/(a1 + a2) + 1/b = 1/f .

far from any practical applications, and especially from astronomy. Indeed, the need for

a laser-pumped source of photon pairs and for collecting of all light in the object channel

(which means that the object has to be placed in the close vicinity of the collection optics)

effectively ruled out such applications.

A first step towards practical ghost imaging was made ten years after its initial demon-

stration, when it was shown that the two-photon correlation properties of common thermal

light are applicable for ghost imaging [21, 22]. Since thermal light sources are much more

abundant than parametric light sources, and in particular in space, this realization has been

very important. Next, it was shown that collecting all the light in the object channel (the

“bucket detection”) is not required, and that only some small portion of scattered light could

be collected instead [19]. This has allowed the object to be placed at a large distance from

the observer. Remarkably, the approach by [19] has already relied on the pseudo-thermal

light source rather than on parametric light, as shown in Fig. 2.

However, using thermal light sources brings about a new complication: a beam splitter

that has to be placed between the source and the object (see Fig. 2). This beam split-

ter is needed to create the reference channel whose speckle pattern duplicates that in the

object channel, enabling the intensity correlation imaging. Such a geometry can be easily
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FIG. 2: Using a thermal light source with a point-like detector collecting the light scattered by an

object gives access to ghost imaging of distant and hard to access objects. Experimental diagram

and image from [19].

implemented in a lab, but becomes problematic when both the source and the object, and

possibly the observers, are located far in space.

This is the key problem we need to solve in our research. Our approach is illustrated

in Fig. 3. Its main idea is that an object that partially transmits and partially reflects or

scatters light, can itself play the role of the beam splitter. Moreover, even a perfectly opaque

scattering object may under certain conditions (as discussed below) create coherence between

the transmitted and scattered light, which may be utilized for the intensity correlation

imaging. Since the object is present in both channels, this approach leads us away from

“conventional” ghost imaging towards intensity interferometry of the Hanbury Brown and

Twiss type. The similarities and distinctions of these two types of imaging have been

discussed in literature [23]. In our case, an important distinction is that we will not be

concerned with the angular size or other properties of the source, which will be assumed

to be known. Instead, we will study how the object’s geometry and location relative to

the source and observer affect the intensity correlation. We will attempt to restore these

parameters from the correlation measurements and show that these results could provide

important information complementary to conventional direct observations.

Configuration shown in Fig. 3(b) can be realized in three different ways, when both, one

or none of the detectors receive the direct light from the source in addition to the object-

scattered light. The mission concepts arising from the last two configurations are illustrated
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(a) (b)

FIG. 3: Conceptual schematic of conventional thermal light ghost imaging setup (a) and of our ap-

proach (b). Colors represent transverse optical modes (speckles) responsible for the excess intensity

correlation and providing the physical mechanism for the correlation imaging.

in Fig. 4 (a) and (b), respectively.

Obviously, shielding one or both detectors from the direct source light provides reduced

background signal and appears advantageous, as well as simpler to analyze. However, it

requires the source and object to be optically resolvable and may require placing one or

both detectors in space far apart from each other. For very distant objects this may not

be feasible. In the following analysis we will assume that both detectors see the direct as

well as scattered (in the nearly forward direction) light, thereby realizing the scenario from

(a) (b)

FIG. 4: Two possible mission scenarios that may arise from the measurement schematics in

Fig. 3(b): one detector receives only scattered light (a); both detectors receive scattered as well as

the direct light (b).
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Fig. 4(b).

Below we will develop and test a simple analytic model that will allow us to study

the intensity-correlation signatures of simple test objects. Based on this model we will

make predictions concerning the observability of various space objects, and concerning their

parameters that can be inferred from such observations. We will show that the object’s image

reconstruction is possible when an array of detectors is used, such as shown in Fig. 5. By

the “image” here we will understand the object’s column optical density in the line of sight

direction. In the case of fully opaque objects such imaging is equivalent to reconstruction

of the object’s contour.

FIG. 5: In this mission concept an array of detectors is used to reconstruct the dark object’s image

from intensity interferometry data. The array can be either ground-based or space-based as shown.

C. Proposed approach in the context of modern astronomy

High angular resolution is indisputably the main figure of merit in astronomical observa-

tions and the main parameter in astronomy missions. Different missions performance with

respect to this parameter at different wavelengths is summarized in Fig. 6. This figure also

includes the projected performance of an intensity interferometer based on the Cherenkov

Telescope Array (CTA) facility, which will be discussed in more details in the following. It
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FIG. 6: The angular resolution chart illustrating various approaches capabilities. Projected capa-

bility of the intensity-interferometric technique based on the Cherenkov Telescope Array (CTA)

facility is shown in red.

should be mentioned that the majority of stars in the Bright Star Catalogue have the an-

gular size below 1 milliarcsecond, hence a much better resolution is required to observe any

stellar features. The merit of the intensity interferometry in reaching this goal is evident.

As a further advantage it should be mentioned that this approach is immune to atmospheric

turbulence and therefore can be implemented on the ground. The turbulence limits the use-

ful aperture of ground-based telescopes and field interferometers to approximately 60 cm;

by contrast, the CTA effective aperture (the interferometer baseline) is going to reach 2 km.

We have already mentioned the sharp rise of the enthusiasm regarding the intensity

interferometry applications in astronomy, which has followed Hanbury Brown and Twiss

discovery but quickly subsided due to insufficient detection techniques available in the mid-

20th century. Presently, the field experiences an evident revival, as can be seen from the

growing number of research activities and publications in the field. For example, the Uni-

versity of Utah has recently (in Spring 2014) deployed a pair of 3-m diameter segmented
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optical telescopes at StarBase-Utah [7]. These telescopes use photomultiplier tubes on the

focal plane to detect starlight. As another example, E. Horch’s group at the Southern Con-

necticut State University [24] carries out measurements with a 53 m baseline stellar intensity

interferometer using single-photon avalanche photodiodes (SPAD) for detection. It is impor-

tant to realize that the telescopes in the intensity-interferometric array need not have high

imaging quality. Since the connection between them is not optical but only electronic, their

error budget relates to the electronic time resolution. For example, 10 ns resolution corre-

sponds to 3 meters light-travel distance, which greatly relaxes optical quality requirements

and reduces the project cost.

Rather than building dedicated intensity-interferometric telescope arrays and high-speed

detectors and electronic networks, it may be beneficial to leverage already existing Cherenkov

telescopes arrays. Such arrays are equipped with high-resolution photon detectors and cor-

relation electronics that is required for study of high-energy cosmic particles and can also

be used for intensity interferometry measurements.

A few of such arrays presently exist worldwide, e.g. the High Energy Stereoscopic System

(H.E.S.S.) in Namibia, see Fig. 7; the High Altitude Gamma Ray Telescope (HAGAR) in

India (which is the site of the 21-m Major Atmospheric Cherenkov Experiment (MACE) tele-

scope); Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern

Arizona, measuring digital correlations between pairs of 12-m telescopes with 1.6 ns reso-

lution [6]; Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes (MAGIC) on La

FIG. 7: The High Energy Stereoscopic System (H.E.S.S.) telescopes array in Namibia.
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Palma; and CANGAROO in Australia. Some of these projects are open to external research

proposals, which can provide a path for the future developing of our project.

Finally, as the larger-scale effort, we should mention the CTA Consortium. It is a large

international project designed to deploy a network of telescopes equipped with high-speed

photodetectors and high-bandwith time-correlation electronics. The CTA array will consist

of 50-100 telescopes spread over a few square km, as shown in Fig. 8 .

(a) (b)

FIG. 8: One possible layout for the CTA (a) and its instantaneous reciprocal (Fourier) plane

coverage in the zenith direction (b), from [8].

Various types and sizes of telescopes are considered for the CTA project. One of the

most likely candidates is the SST-1M prototype, which is shown in Fig. 9. This telescope is

developed by a subconsortium of Polish and Swiss institutions. It will be equipped with a

novel fully digital camera based on SPADs. The telescope features a Davies-Cotton optical

design with focal length f=5.6 m and the reflective dish of 4 m diameter, that is composed of

18 hexagonal mirror facets. The large field-of-view will allow the scans of extended regions

of the sky in search of the most powerful accelerators of galactic cosmic rays. The SST-1M

has been conceived to be easily mass-producible by using standard industrial technology

and materials, easy to transport and install. The telescope weight, including camera and

auxiliary systems, is about 9 tons. Given the compactness and weight of the structure, three

telescope structures can be packed in a standard open-top 12 m container for the shipping

from the production site to the assembly point. This design achieves currently the lowest

costs for the SSTs.
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FIG. 9: An SST1M telescope is a workhorse of the CTA project. This telescope is designed for

light collection rather than for imaging, which considerably offsets the costs of its mass-production.

Close collaboration between the CTA Consortium and the intensity interferometry com-

munity is anticipated. An international workshop dedicated to intensity interferometry has

been held in Nice in May 2014, featuring the progress of research groups from all over the

world, including ours. The workshop was co-located with the CTA Consortium meeting and

highlighted in a CTA newsletter.

Provided with suitable software, the CTA could become the first kilometer-scale optical

intensity interferometer, reaching into novel microarcsecond resolution domains. Imaging

luminous objects, it could reveal the surfaces of rotationally flattened stars with their cir-

cumstellar disks and winds, monitor a nova eruption, or possibly even visualize an exoplanet

during its transit across some nearby star. Such measurements are in fact planned for the

CTA during down time of its main operations (e.g., due to full Moon).

The most traditional goal of stellar intensity interferometry is to measure the stars angular

diameter. These measurements can provide information of the effective temperature, which

can be obtained by measuring the angular radius and the parallax (distance) [25]. When

combined with spectroscopic and spectrophotometric measurements, it can also be used to

make inferences regarding stellar atmospheres [26].
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The advance of the detection and analysis techniques enabled other, even more ambitious

goals, such as the study of rapidly rotating stars. Local gravity of such stars can be consid-

erably reduced (even approaching zero) in the equatorial regions, which leads to apparent

darkening of these regions. Rotation also leads to oblateness of the star disk.

Another important class of astrophysical systems that could be potentially studied with

intensity interferometry technique are binary systems. Resolving such system and measuring

their orbital parameters can provide important information regarding the stars’ masses and

possibly mass flow. The mass flow can also be studied in the case or radiatively driven stellar

mass loss [27], such as may occur in hot O and B type stars. Finally, stellar features similar

to solar spots and jets may also be accessible for intensity interferometric observations.

A more detailed review of various stellar objects of interest that can be observed by this

technique is available in [9].

Our approach significantly expands the list of potential objects of interest for astronom-

ical intensity interferometry, including in it dark and potentially purely refracting (phase)

objects eclipsing celestial light sources. Perhaps the most important class of such objects

are exoplanets. Exoplanets have been already mentioned in the context of “conventional”

intensity interferometry. In this context they are considered as dark spots on their host

stars. While this may be a good approximation in many cases, our approach provides a

more accurate treatment accounting for the distance between the planet and the star. This

correction becomes important when the distance between the light source and the object

approaches the distance between the object and the observer. Such situations arise in cases

when the dark objects of interest are black holes, neutron stars, gas and dust clouds, Kuiper

belt asteroids, and various other non-radiating objects. In the following section we will dis-

cuss the variety of such objects and the potential scientific payoff from their study in more

detail.

D. Perceived benefits and perspectives

Historically, new frontiers in astrophysics have opened whenever new observation con-

cepts become available. Intensity interferometry has already been considered for imaging

a variety of stellar phenomena including tidal and rotational distortions, limb darkening

and others. The proposed approach will enable new revolutionary observation techniques
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granting astrophysicists the access to some of the most elusive and intriguing objects of the

Universe: those that do not emit their own light. The scientific value and the impact to the

state of knowledge of such studies is emphasized in the NASA 2011 Strategic Plan. Specifi-

cally, the document states that as a part of NASA’s pursuit to further the understanding of

how the universe works, explore how it began and evolved it seeks to improve understanding

of the nature of black holes, dark energy, dark matter, and gravity, as well as to generate a

census of extra-solar planets and determine their properties. In the latter context the search

for Earth-like planets is considered to have a special priority.

In addition to the scientific merits discussed above, our research pursues the technologi-

cal priorities defined in the 2010 Decadal Survey for Astronomy and Astrophysics, such as

a broad support for high-resolution instrumentation for both stellar physics and exoplanet

searches. In this context, we strive to develop an observation technique capable of advancing

the optical resolution by potentially orders of magnitude compared to even most ambitious

direct space telescopes and amplitude space interferometers. This goal is pursued by mul-

tiple research groups worldwide, which confirms its underlying principles and emphasizes

its significance. However, the uniqueness of this JPL research is that we are the first to

develop application of this technique to non-radiating objects. Observation and imaging of

dark objects, such as those listed above, is one of the important but most difficult prob-

lems in astronomy. It becomes especially challenging when an object can scatter little or

no star light, so its main optical effect is limited to gravitational bending of optical rays

from background sources, known as gravitational lensing and microlensing. Objects that

can potentially cause gravitational lensing, such as black holes, hypothesized dark matter,

or neutron stars, are among the most intriguing astrophysics objects that are the key to

understanding the origin and fundamental physical principles of our Universe.

The technological power of our approach is based on high resolution of intensity interfer-

ometers, at the levels that cannot be rivaled by first-order interferometry or telescopes with

realistic apertures. While the Rayleigh criterion still applies to intensity interferometers, it

is set not by an individual detector’s aperture but by the entire size of the detectors array.

Intensity correlation imaging therefore may be compared to the synthetic aperture approach

with telescope arrays. However while the synthetic aperture approach requires positioning

of the array element with precision and stability at the level of a fraction of the optical

wavelength, intensity interferometers only need it at the level of the coherence length. The
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coherence length, determined by the optical filter bandwidth, may exceed the wavelength

by orders of magnitude. The optical and electronic path lengths stability requirements are

relaxed accordingly, which affords larger observation baselines, and consequently, better res-

olution. One of the important consequences of this is that the intensity correlation technique

is practically immune to atmospheric perturbations and in some cases circumvents the ne-

cessity of going to space for high-resolution observations. This in turn lifts a large number

of stringent constraints, which brings about further significant benefits.

Let us briefly discuss some of the dark celestial objects that may be observable with our

intensity interferometry technique.

• Exoplanets. In March 2014 NASA’s Kepler mission announced the discovery of 715

new planets. These newly-verified worlds orbit 305 stars, revealing multiple-planet

systems much like our own solar system. This discovery marks a significant increase

in the number of known small-sized planets more akin to Earth than previously iden-

tified exoplanets. High-resolution imaging of these planets by intensity interferometry

technique will allow NASA to acquire information regarding their orbits orientations,

presence of moons, and possibly the presence and state of atmosphere. Intensity-

interferometric analysis of Kepler data is also important for eliminating the false posi-

tives and more accurate modeling of the light curve [28]. The false positives may arise

due to a binary background star that could mimic planetary transient or even due to a

normal background star offsetting the transient light curve, as has been the case with

Kepler21b and Kepler14b [29].

• Kuiper belt and Oort cloud asteroids. These objects are observed while oc-

casionally obscuring the background stars [30–36]. Understanding the nature and

composition of these objects is important for understanding the origin of the Kuiper

belt and Oort cloud and of the underlying astrophysics. Such understanding may be

gained by intensity-interferometric study of the objects shapes and sizes.

• Black holes. These objects fall into the category of predominantly phase objects as

described above. Their close study has great scientific merit. Unfortunately, stellar-

mass black holes are very rare. Nonetheless, a remarkable discovery was reported

[37] earlier this year of a black hole orbiting a star MWC 656. Investigating of this
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and similar systems may greatly benefit from our approach. For example, plumes of

accretion may be revealed.

• “Phase screens” due to cold gas clouds in space. Such gas clouds are thought

to be responsible for the “hidden” mass and may present an alternative to “dark

matter” [38, 39]. Studying their density distribution encoded in the transmitted light

phase gradient (aka the stellar scintillation) is yet another exciting application for

high-resolution intensity-interferometric imaging in the optical range.

Our approach implies a very specific observation scenario, when the object of interest

passes between a light source and the observer. While perfect alignment of these three

parties is not required, we have shown theoretically [40] and experimentally (see Section

III D. below) that the object signature diminishes rapidly as the object moves outside the

angular size of the source as seen by the observer. It is clear that although stars occultations

are not uncommon in astronomy, and in fact constitute a base for some types of exoplanets

[1–3] and Kuiper belt asteroids [30–36] observations, identifying appropriate object-source

pairs requires a thorough investigation which would amount to a separate research effort.

Here, we provide only a quick review of potential source candidates. The most promising

sources are the largest and most distant (in order to increase the observation volume), but

at the same time the brightest (in order to increase the signal) stars. An list of several such

stars is given in Table I. Here the full angular sizes of stars θ are given in milliarcseconds

(mas). The peak emission wavelength λp is found from the black body radiation model, and

the speckle size is evaluated for this wavelength based on the distance and angular size. The

speckle size dsp is the full width at half maximum of the transverse auto-correlation function

of a disk source

|G12(x)|2 =
(

J1(2πθx/λp)

2πθx/λp

)2

(1)

(see discussion in the next chapter). It is found from the condition

dsp ≈
1.62λp

2πθ
. (2)

Unfortunately, the stars that are known to have planets have considerably smaller ap-

parent magnitude, which implies more difficult observations. Some of such stars that are

brighter than apparent magnitude 9 are listed in Table II. The angular sizes of stars and
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planets in this case are smaller and measured in microarcseconds (µas) instead of milliarc-

seconds. The planet sizes are inferred from their masses, that are in turn evaluated from

Doppler measurements of the radial velocity shifts of the host stars. Such inferences may

not be accurate due to various planetary composition and density.

TABLE I: Parameters of some stars that could be potentially used for imaging dark celestial objects

by intensity interferometry.
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TABLE II: Parameters of some brightest stars that are known to have a planet, potentially suitable

for intensity interferometry observations.

Alternatively to stars, quasars can also be used as light sources. The advantage of quasars

is their great distance from us (billions of light years) which increases the chance of occul-

tation with a dark object. In fact quasars have produced the most spectacular gravitational

lensing images even with conventional observation techniques. The disadvantage is their

low photon flux. The brightest known quasar, 3C 273, has apparent visible brightness of
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only 12.9. Another potential disadvantage of quasars is that their radiation has strongly

non-thermal nature, and the presence and degree of thermal photon bunching, providing the

physical background for intensity interferometry, yet needs to be established.

From the above examples we see that different types of source-object systems will have its

own set of key parameters (such as the source photon flux and its attenuation by the object,

the transient time, the source speckle size, spectral parameters, and others) that may vary

dramatically from system to system. Therefore each case will require a separate feasibility

study under its own specific constraints, such as allowed observation time, required detectors

array size, timing accuracy, observation wavelength and so on.

To summarize this Section, we would like to emphasize that the optical imaging in as-

tronomy will remain an active area of NASA’s deep space exploration efforts for many years

to come. Developing a novel technology geared to provide new or enhanced data will defi-

nitely have a high impact. Potential benefits of our approach will include new capabilities

for enhanced resolution, which is determined by a large baseline between the two detectors,

in a way similar to the synthetic aperture approach. These benefits will also include the

capability for faint object detection, and broader range imaging of extra-terrestrial objects,

such as Earth-like planets (including those near bright stars), black holes, dust or gas clouds,

and possibly dark matter. We envision the emergence of new research programs and space

missions enabled by the technology we currently develop. The ramifications of our research

may extend beyond the scope of astronomy and astrophysics. Ghost imaging of remote

objects or of objects with limited access attracts increasing attention from the military and

national security agencies.

II. PHASE I GOALS AND ACCOMPLISHMENTS

The Phase I primary objective has been to evaluate the feasibility of our approach at a

conceptual level. We investigated the possibility of performing the thermal-light Ghost imag-

ing without the optical beam splitter, which has been indispensable in all prior realizations.

In our approach the object itself plays the role of the beam splitter by creating coherence

between the detectors in a way that imprints the object’s optical properties onto the mea-

sured intensity correlation function. If proved viable, this approach will allow for practical

application of the correlation imaging technique, in particular for astronomy observations.
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While the earlier study of ghost imaging provided solid theoretical base for the underlying

approach, a thorough feasibility study is required prior to launching a large-scale mission-

focused effort. The main goal of the one-year-long Phase I has been to carry out such a

study and present the recommendations for the Phase II, as to whether such an effort would

be practical at the present or future level of technology. Three key questions to be answered

by the Phase I research have been the following:

1. Is the proposed approach feasible at the fundamental level?

2. What are the advantages or value added to the conventional approaches?

3. What would a possible future mission look like?

To achieve the Phase I goals we carried out the theoretical analysis of the base ghost

imaging configuration as shown in Fig. 4(b). This configuration choice entailed a more

complicated analysis and less favorable object observability, compared to the configuration

of Fig. 4(a). However the considerations of mission feasibility have prevailed and determined

our configuration choice as a conceptual example of the potential mission architecture.

The analysis carried for the selected configuration has yielded the positive answer to

the first Phase I question. This analysis has been further used to provide the theoretical

estimates of the technique’s expected performance with respect to astronomical objects of

interest. Based on these estimates, we discuss the practical aspects of ghost imaging in

space, such as the signal-to-noise ratio (SNR), optical bandwidth, clock synchronization

requirements, and others, to evaluate the advantages or establish the added benefits of the

correlation imaging technique. The account of Phase I research has been condensed into list

of benchmarks summarized below with a brief discussion of the accomplishments.

A. Introducing the theoretical model

In this Section we present our fundamental analysis using a simple model object and

carried out in paraxial planar geometry. We consider a flat source and a flat object placed in

the source and object planes, respectively. In these planes we introduce the local transverse

coordinates ~ρ for the source and ~ρo for the object. We designate Ls as the distance between

the source and object planes, and L1,2 as the distances between the object plane and the
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planes of point-like detectors 1 and 2. The local transverse positions of these detectors are

denoted as ~ρ1 and ~ρ2, respectively, as shown in Fig. 10.

FIG. 10: Relative position of the source, object and detectors in the flat paraxial model.

Let us assume that the source field is bound by a Gaussian envelope with the width Rs

and can be written as E(~ρ, t)e
− ρ2

2R2
s . This model approximates the source with a diameter

(intensity distribution FWHM) equal to
√
2Rs. In paraxial approximation, the field at

detector 1 is related to the field of the source as

E1(~ρ1, t) =

∫ ∫

d2ρd2ρoe
− ρ2

2R2
s E(~ρ, t− L1 + Ls

c
)hLs(~ρ− ~ρo)T (~ρo)hL1(~ρo − ~ρ1), (3)

Although it looks complicated, expression (3) is actually quite straightforward. It uses the

paraxial approximation for the optical field propagation function

hZ(~x) =
eikZ

iλZ
eik

|~x|2

2Z (4)

that relates the electric field at two spatial points separated by a distance Z along the

line of sight and by a transverse displacement ~x (assuming that x ≪ Z for the paraxial

approximation) in the transverse directions. A field produced by an extended source in a

remote point is then given by a convolution of (4) with the source’s own field distribution.

This procedure yields the field distribution across the object. We then multiply this field

by the object’s field transmission function T (~ρo) which may be real (for a purely absorbing

object), imaginary (for a purely phase object, e.g. a thin lens), or complex. Then we repeat
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the propagation and integration steps to obtain expression (3) for the field at the detector.

A relation similar to (3) can be written for the field at the other detector.

Let us consider the intensity correlation observable

〈I1(~ρ1, t1)I2(~ρ2, t2)〉 = 〈E†
1(~ρ1, t1)E

†
2(~ρ2, t2)E1(~ρ1, t1)E2(~ρ2, t2)〉. (5)

For thermal light, the phase-sensitive term in (5) vanishes [41], and we arrive at

〈I1(~ρ1, t1)I2(~ρ2, t2)〉 = |〈E†
1(~ρ1, t1)E2(~ρ2, t2)〉|2 + 〈|E1(~ρ1, t1)|2〉〈|E2(~ρ2, t2)|2〉, (6)

where the first term describes the possible ghost image and the second term gives the un-

correlated “background” intensity product, which also describes the object’s shadow. To

separate these effects it is convenient to introduce the normalized Glauber correlation func-

tion [42]

g(2)(~ρ1, t1; ~ρ2, t2) = 1 +
|〈E†

1(~ρ1, t1)E2(~ρ2, t2)〉|2
〈|E1(~ρ1, t1)|2〉〈|E2(~ρ2, t2)|2〉

= 1 +
|G12|2
G11G22

. (7)

It is also convenient to consider |G12|2 as an observable, which can be accessed by mea-

suring a correlation of the detector’s photocurrents fluctuations. Indeed, let us assume that

the detection is performed by two pinhole photo detectors that have equal sensitive areas

Ad and quantum efficiencies η and are located at ~ρ1 and ~ρ2 of the z = L + Ls plane. We

also assume that the detectors are small enough to neglect the field variation across Ad.

The stochastic photocurrents generated by these detectors in response to the incident field

Ed(~ρ, t) (here d = 1, 2) have the following first-order conditional moments normalized to

photoelectrons/s:

〈id(t)|Ed(~ρd, t)〉 = ηAd

∫

dτ |Ed(~ρd, τ)|2h(t− τ). (8)

In Eq. (8) h(t) is the detectors baseband impulse response, which includes any filtering that

occurs prior to the correlation measurement. In order to eliminate a featureless background,

it may be convenient to assume that a DC blocking filter is included in h(t), such that
∫

dt h(t) = 0.

The blocked DC photocurrent component provides information regarding the total pho-

ton flux blocked by the object, which is at the heart of the photon flux based detection

methodology, such as used e.g. in the Kepler planetary detection mission. Kepler tracks

slow intensity variations of a star to detect Earth-sized exoplanets orbiting the star and to
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estimate their orbital characteristics. We tailor our analysis to obtain the additional infor-

mation that can be gathered via the intensity correlation technique, in a way that does not

preclude the observer from also using the mean photon flux registered by each detector.

Correlation between the intensity fluctuations observed by the two detectors located at

~ρ1 and ~ρ2 is measured by multiplying the two photocurrents and time-averaging the product:

C(~ρ1, ~ρ2) ≡ T−1

∫ T/2

−T/2

dt i1(t)i2(t), (9)

where T is the multiplication circuit integration time, or the “coincidence window” if photon

counting technique is used. The stationary photocurrents correlation measurement converges

to a time-independent ensemble average, given by

〈C(~ρ1, ~ρ2)〉 = C|〈E∗
1(~ρ1)E2(~ρ2)〉|2 = C|G12|2, (10)

where C ≡ η2A2
d[|Γ(t)|2 ⋆ h(t) ⋆ h(−t)], and ⋆ denotes convolution. Γ(t) is a δ-like function

whose width corresponds to the optical coherence time. The latter may be determined by the

spectral filters bandwidth. For a narrow-band source, such that Γ(t) is much broader than

h(t), the parameter C can be interpreted as a detection volume. For a broad-band source

this value is reduced proportionally to the square of the h(t) and Γ(t) widths ratio, that

is, to the number M of detected longitudinal modes. This is consistent with a well-known

result for Glauber correlation function for a multimode thermal light: g(2)(0) = 1 + 1/M .

Glauber correlation function will be our main observable in the following analysis. How-

ever, let us mention that other types of measurements are possible. In particular, one can

measure higher-order correlation functions g(m,n) [43–45], the variance of intensities differ-

ence (instead of a product) [46–48], or even a multi-detector correlation [49, 50]. The analysis

based on the field propagation equation (3) can be easily extended to these types of measure-

ments. Such measurements will have different dependencies on the optical mode structure

and on the detector’s quantum efficiencies, and may offer interesting resolution/SNR trade-

off opportunities. The possibility of utilizing these measurement strategies distinguishes our

approach from the conventional intensity interferometry.

Let us now substitute the fields E1(~ρ1, t1) and E2(~ρ2, t2) given by (3) into (7) and take

into account the correlation property of thermal field E(~ρ, t):

〈E†(~ρ, t)E(~ρ′, t′)〉 ∝ δ(~ρ− ~ρ′)Γ(t− t′). (11)
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Unless we are interested in color imaging, using narrow-band filters is undesirable because

they reduce the optical power available for the measurement. On the other hand, short co-

herence time requires compatibly fast optical detectors and intensity-correlation circuitry in

order to ensure single longitudinal mode detection. Therefore to carry out a fair comparison

between the direct intensity measurement and the correlation measurement, we need to take

into account the photon flux reduction due to the spectral filtering required in the latter

case. As an example, let us assume a 1 ps timing accuracy and the central wavelength of

1 micron. This accuracy requirement may appear unrealistic, since most of contemporary

time-stamp systems have time resolution worse than 50 ps, while the pulse front jitter in

commercial photon counting detectors can be as low as 30 ps. However these state of the

art figures show strong improving trends. Projecting these trends, it is reasonable to expect

a single-digit picosecond time resolution systems available by the time our concept matures.

A 1 ps coherence time corresponds to a 3.3 nm wide spectral band around 1 micron

central wavelength. Comparing the optical power detected within this band to the total

power radiated by the Sun within the typical sensitivity band of a silicon photo detector

(see Fig. 11) we find that for a correlation measurement we have in our disposal 0.5% of

the optical power available for a broad-band intensity measurement. This reduces the SNR

in a shot-noise limited narrow-band correlation measurement compared to a broad-band

intensity measurement.
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FIG. 11: The solar radiation normalized spectral density (from [51]), spectral sensitivity of a typical

silicon photo diode, and their product.
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The SNR loss will be less severe for the correlation measurement compared to a color-

resolved intensity measurement, such as may be used in spectroscopy or Doppler measure-

ments. In particular, no loss may be suffered at all, if one is interested in a very narrow-band

measurement, e.g. a measurement with a specific spectral line. A more detailed discussion

of the direct-intensity vs. correlation measurement SNRs will be given in Chapter III C

reporting the Phase II accomplishments.

Let us point out that in addition to the high speed and low jitter requirements placed

on the photo detectors and correlation electronics, a broad-band correlation measurement

placed stringent requirements on the clock synchronization between the two detectors, as well

as on the accuracy of their relative positioning L1 − L2 along the line of sight. Fortunately,

recent spectacular breakthrough in the field of ultra-precise clocks (in particular, optical

clocks) has created a powerful stimulus for developing adequate time transfer protocols.

Synchronization of a pair of stationary clocks down to the required precision is already

within reach.

More difficulties would arise in case of space-based observer(s). Then the clock synchro-

nization problem is inseparable from the ranging problem, which, in our example of 1 ps

timing accuracy, should be better than 30 microns. This problem also has a solution. As

one example, in the recent GRAIL mission Ka-band ranging has allowed for the 10 microns

ranging precision [52]. Even more accurate ranging is required and is being developed for

the optical VLBI and synthetic aperture applications, such as LISA. We expect to be able

to leverage this technology which may be expected to advance even further by the time of

the “Ghost imaging of space objects” mission design.

As an alternative, the time synchronization problem can be considerably alleviated if

one takes the advantage of the fact that in our approach we always rely on the maximum

correlation, that is, zero delay between the photon arrival times. This will allow us to

continuously adjust the local clocks so as to maximize the measured correlation function,

and to monitor the change of this maximal value. In a sense, this would amount to using

the detected signal as a time-synchronization signal, an approach one might call a stellar

GPS.

To continue our analysis we will assume that perfect synchronization between the detec-

tors has been achieved and Γ(t− t′) = 1 in (11). We then suppress the temporal part of the
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problem. For the numerator in (7) we derive

G12(~ρ1, ~ρ2) =

∫

d2ρd2ρ′od
2ρo e

− ρ2

R2
s T2(~ρo)T

∗
1 (~ρ

′
o) h

∗
Ls
(~ρ− ~ρ′o)hLs(~ρ− ~ρo)h

∗
L1
(~ρ′o− ~ρ1)hL2(~ρo−~ρ2).

(12)

In (12) we have introduced T1,2(~ρo) to allow the transmission functions to be different for

detectors 1 and 2. This will allow us to consider the case when the object (partially)

obscures the source light for one detector, and scatters it to the other, therefore addressing

the scenario in Fig. 4(a). In this case one detector receives the direct light from the source,

while the other only sees the light scattered by the object. In handling such situations we

still need to make sure the paraxial approximation holds, and that the approximation of a

flat object remains reasonable.

For the following analysis it will be convenient to introduce an aperture-limited propa-

gation function

G
(Rs)
12 (Za, ~ρa;Zb, ~ρb) =

∫

d2ρe
− ρ2

R2
s h∗

Za
(~ρ− ~ρa)hZb

(~ρ− ~ρb) (13)

for the fields propagating to locations (Za, ~ρa) and (Zb, ~ρb) from a Gaussian source of thermal

light that has a width Rs and is located at Z = 0. Equivalently, from the advanced wave

perspective [53], it describes time-reversed propagation of a photon from (−Za, ~ρa) to the

source, and then forward in time to (Zb, ~ρb). If the source is infinitely large, Rs → ∞, the

aperture-limited propagation function (13) becomes equal to a usual paraxial point-source

propagation function from one detector to the other:

G
(∞)
12 (Za, ~ρa;Zb, ~ρb) = hZb−Za(~ρb − ~ρa). (14)

The aperture-limited propagation function arises in (7):

G12(~ρ1, ~ρ2) =

∫ ∫

d2ρod
2ρ′ohL2(~ρo − ~ρ2)h

∗
L1
(~ρ′o − ~ρ1)T2(~ρo)T

∗
1 (~ρ

′
o)G

(Rs)
12 (Ls, ~ρ′o;Ls, ~ρo), (15)

and likewise for G11(~ρ1) and G22(~ρ2). To evaluate G
(Rs)
12 (Za, ~ρa;Zb, ~ρb) in a general form we

introduce polar coordinates such that
∫

d2ρ =

∫ ∞

0

ρdρ

∫ 2π

0

dϕ, |~ρa − ~ρb|2 = ρ2a + ρ2b − 2ρaρb cos(ϕa − ϕb). (16)

The angular integration in Eq. (13) yields

G
(Rs)
12 (Za, ~ρa;Zb, ~ρb) = 2π

eik(Zb−Za)

λ2ZaZb
ei

k
2
(ρ2b/Zb−ρ2a/Za) (17)

×
∫ ∞

0

ρdρe
−ρ2

[

1

R2
s
+ik

Zb−Za
2ZaZb

]

J0

(

kρ

∣

∣

∣

∣

~ρb
Zb
− ~ρa

Za

∣

∣

∣

∣

)

.
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Then integrating over the radius we obtain

G
(Rs)
12 (Za, ~ρa;Zb, ~ρb) = 2π

R2
s

λ2

eik(Zb−Za)

2ZaZb + ikR2
s(Zb − Za)

(18)

× ei
k
2
(ρ2b/Zb−ρ2a/Za)e

− k2

2

∣

∣

∣

~ρb
Zb

− ~ρa
Za

∣

∣

∣

2 R2
sZaZb

2ZaZb+ikR2
s(Zb−Za) .

In the case of interest (15) we have Za = Zb = Ls, which leads to

G
(Rs)
12 (Ls, ~ρ′o;Ls, ~ρo) = q2π−1ei

q
Rs

(ρ2o−ρ′2o )e−q2| ~ρo− ~ρ′o|2 , (19)

where q−1 = 2Ls/(kRs) is the Gaussian width of the correlation function for a source that

has Gaussian field distribution introduced above. This value also represents the FWHM of

a Gaussian source speckle.

Let us discuss another source of practical significance: a uniform disk. In order to match

the total source luminosity, the disk radius has to be
√
2Rs, as has been discussed above.

This case can be analyzed by changing Eq. (18) into the form

G
[
√
2Rs]

12 (Za, ~ρa;Zb, ~ρb) = 2π
eik(Zb−Za)

λ2ZaZb
ei

k
2
(ρ2b/Zb−ρ2a/Za) (20)

×
∫

√
2Rs

0

ρdρe
−ikρ2

Zb−Za
2ZaZb J0

(

kρ

∣

∣

∣

∣

~ρb
Zb
− ~ρa

Za

∣

∣

∣

∣

)

.

For Za = Zb = Ls this yields

G
[
√
2Rs]

12 (Ls, ~ρ′o;Ls, ~ρo) = q2π−1ei
q
Rs

(ρ2o−ρ′2o )J1(2
√
2q|~ρo − ~ρ′o|)√

2q|~ρo − ~ρ′o|
. (21)

This expression has been used to derive (1).

The correlation observables (i.e., speckle shapes) for a Gaussian and disk sources calcu-

lated according to Eqs. (18) and (21), respectively, are shown in Fig. 12. We see that they

are very close, which means that the Gaussian source model provides a surprisingly good

approximation of realistic sources of thermal light in space. We will continue to use it for

the rest of this section. We will also limit the discussion to a special balanced case when

L1 = L2 = L. While this case limits possible observation scenario, it allows us to carry out

exact analytical calculations in many cases of interest, and to evaluate the practical utility

of our approach.

To carry out the further calculation it will be convenient to introduce new coordinates:

~x = (~ρo + ~ρ′o)/
√
2 and ~y = (~ρo − ~ρ′o)/

√
2. Then substituting (19) into (15) we obtain

G12(~ρ1, ~ρ2) = A

∫ ∫

S(~x, ~y)e−2q2y2ei
~∆~xei

~Σ~yeiγ~x~yd2xd2y, (22)
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FIG. 12: The speckle shapes (intensity correlation observables) for a Gaussian and disk sources of

equal luminosity are given by the blue and red curves, respectively.

where

A = π

(

Rs

λ2LLs

)2

e
ik
2L

(ρ22−ρ21),

S(~x, ~y) = T2(
~x+ ~y√

2
)T ∗

1 (
~x− ~y√

2
),

~∆ =
k√
2L

(~ρ1 − ~ρ2), (23)

~Σ =
k√
2L

(~ρ1 + ~ρ2),

γ = k(1/L+ 1/Ls).

The Gaussian term in (22) arises from Fourier transform of the source field distribution.

This suggests that (22) could be generalized for any such distribution, which is then to

be treated numerically. This approach will be explored in the framework of the Phase II

research program. At this stage we will limit our consideration to a Gaussian source.

As a sanity check, let us notice that if we “turn off” the object by setting S(~x, ~y) = 1,

the integral over d2x in (22) yields (2π)2δ(~∆ + γ~y). Then the d2y integral yields, quite

expectedly, the correlation function of a Gaussian source (19) with increased free-space

propagation length Ls → L+ Ls:

G12(~ρ1, ~ρ2)→ G
(Rs)
12 (L+ Ls, ~ρ1;L+ Ls, ~ρ2). (24)

Let us now consider a few example objects and discuss their possible relevance for the

astronomy applications.
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B. A Gaussian absorber

Let us consider an object that has a Gaussian absorption profile. This case can approx-

imate e.g. a spherical dust or gas cloud of roughly uniform density. It also can be used as

a crude model for a planetary occultation of a star. The transmission function of such an

object can be modeled as

T (~ρo) = 1− T0e
− ρ2o

2R2
o , (25)

which gives rise to four terms:

S(~x, ~y) = S0 + S1a + S1b + S2 = 1− T0e
− (~x+~y)2

4R2
o − T0e

− (~x−~y)2

4R2
o + T 2

0 e
−x2+y2

2R2
o . (26)

In (25) and (26) T0 is the amplitude transmission of the most opaque (central) part of

the object. Consequently, the correlation function also will consist of four terms: G12 =

G
(0)
12 +G

(1a)
12 +G

(1b)
12 +G

(2)
12 , where the zero-order term corresponds to free-space propagation

(24): G
(0)
12 = G

(Rs)
12 (L + Ls, ~ρ1;L + Ls, ~ρ2). A straightforward but cumbersome calculation

leads to the following expression for both the first- and the second-order terms:

G
(1,2)
12 (~ρ1, ~ρ2) =

(−T0)
n

π(q̃2 +R2
oγ̃

2)

(

k2RsRo

2LLs

)2

e
−i

k2R2
oγ̃

2L2
ρ22−ρ21

q̃2+R2
oγ̃

2 e
− k2(~ρ2+~ρ1)

2

8L2(q̃2+R2
oγ̃

2) e
− k2R2

oq̃
2

2L2
(~ρ2−~ρ1)

2

q̃2+R2
oγ̃

2 . (27)

To obtain G
(1a,b)
12 , we need to substitute in (27)

n = 1, q̃2 = 2q2 +
1

4R2
o

, γ̃ = γ ± i

2R2
o

.

For G
(2)
12 , we substitute

n = 2, q̃2 = 2q2 +
1

2R2
o

, γ̃ = γ.

We notice that in the multi-mode case when the speckle size on the object greatly exceeds

the object size q̃2 ≈ 2q2. This situation is to be expected for most of source-object systems

in space, however we do not need to make this approximation now.

Let us investigate the result (27) for a set of parameters that can be easily implemented

on an optical table. In Fig. 13 we show a correlation function g(2)(~ρ1 = −~ρ2) and the

intensity profile featuring the object’s shadow. In this simulation an opaque (T0 = 1) object

is placed between a source with Rs = 1 cm and the detectors plane so that Ls = L = 50

cm. The object size Ro is varied from zero to 1, 2 and 3 mm. As the object becomes larger

its shadow becomes deeper and, less intuitively, the speckle size becomes smaller. For larger

objects the speckle shape also becomes distorted.
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FIG. 13: The correlation function g(2)(~ρ1, ~ρ2) vs. the distance ∆ρ = |~ρ1− ~ρ2| (a) and the intensity

profile (b) for a lab parameter set T0 = 1, Ls = L = 50 cm and Rs = 1 cm. The object size Ro is

varied from zero to 1, 2 and 3 mm.

Even less intuitive evolution is undergone by the speckle size (the FWHM) as the object

is moved across the line of sight, imitating a planet passing across the star. To simulate this

transient we actually changed the detector’s position ρs = (ρ1 + ρ2)/2 while the Ro = 1 mm

object was fixed on the initial line of sight at Ls = L = 50 cm. The effective displacement

of the object from the line of sight was then found as ρo = ρsLs/(L+ Ls).

The speckle size evolution is shown in Fig. 14(a) for two cases: when the object is displaced

along the line connecting the detectors ~ρ1 − ~ρ2 (red curve), and when it is displaced in the

perpendicular direction (blue curve). The corresponding variation of the detected photon

flux is shown in Fig. 14(b). The photon flux reaches the minimum when the object is exactly

on the line of sight and does not depend on the displacement direction, as one could expect

from the symmetry considerations.

The speckle width, on the other hand, strongly depends on the displacement orientation.

This implies that unlike the direct intensity measurement, the correlation (speckle width)

measurement has a stereoscopic character. Remarkably, the fractional variation of both

types of observables due to the transient object is approximately 7%, see Fig. 14. In the

framework of the Phase II research we will prove that this is not a coincidence but a rather

general feature of the correlation measurement technique: the object signature present in

the speckle-width measurement has the same relative magnitude as the one present in the

direct intensity measurement. Of course, to compare the efficiencies of these two types of

observations one also need to compare the measurements SNR. Analysis carried out in the
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(a) (b)

FIG. 14: (a) Speckle width as a function of the objects displacement in the direction ~ρ1 − ~ρ2 of

the detectors’ baseline (red) and in the perpendicular direction (blue). (b) Normalized photon flux

corresponding to the cases from (a). The parameter set is T0 = 1, Ls = L = 50 cm, Rs = 1 cm,

Ro = 1 mm.

framework of Phase II research has shown that in this sense the correlation measurement

technique is at a strong disadvantage. However, as has already been mentioned, our goal

is not to compete with intensity-based observations, but to upgrade such observations with

new capabilities. Such a possibility is suggested by the stereoscopic character of the speckle-

width measurement shown in Fig. 14(a). Full understanding of this phenomenon has been

gained in the Phase II research. This understanding has lead to the realization how not only

the orbital displacement but also full 2D imaging of a dark space object is possible. We will

discuss this breakthrough in the following chapters.

Let us now apply our model to an actual astronomical observation carried out by Kepler

space telescope [1, 2]. Substituting the Kepler-20f parameters [2] into our model we find

the relative intensity variation of the order of 10−4, which is consistent with the actual

observation [2], see Fig. 15. In line with the earlier discussion, we use the actual planet

radius times
√
2 as Ro in our simulations. The discrepancy in the dip shape clearly visible

in Fig. 15 arises from using the Gaussian source and absorber model while the actual star

and planet are, of course, better described as disks. However the numerical agreement with

the experiment shows that even a simplistic fully analytical Gaussian model can be useful.

This has encouraged us to carry out the speckle-width measurement simulation for the
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FIG. 15: The intensity variation for Kepler-20e observed in [2] (a), and computed based on our

model (b).

Kepler-20f. The results of these simulations are shown in Fig. 16. As expected, the character

of the transient observable strongly depends on the orbit plane orientation relative to the

detectors’ baseline. Again, the magnitude of the speckle width variation, from 3,603.6 m

to 3,604.2 m, or 1.7× 10−4 fractional change, is very close to the magnitude of the photon

flux variation shown in Fig. 15. We view this result as very encouraging and justifying the

Phase II research effort.

FIG. 16: The predicted speckle width variation for Kepler-20e depends on the relative orientation

of the detectors’ baseline and the planet’s orbit.
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C. Unbalanced arms configuration

So far we have assumed that both detectors are located in a plane perpendicular to

the line of sight. Therefore, within the paraxial approximation, they are equidistant from

the object: L1 = L2. This assumption makes the measurement of the Glauber correlation

function equivalent to measuring the shape of the speckle. But this need not be the case.

In this section we consider a more general situation when L1 6= L2 which may be realized in

asymmetric configurations, e.g. when the correlation measurement is performed by a ground-

based detector jointly with a distant space-based detector, as in Fig. 4(a). Importantly, we

will continue to assume perfect time synchronization between the two detectors, which in the

assymetric case can be achieved with an appropriate time delay. Therefore all the effects

we will observe are going to be of spatial (transverse) rather of temporal (longitudinal)

nature. It will not be possible to carry out the analytical calculations without making

further approximations. From (19) we see that the large aperture approximation (14) holds

when

αs ≡
2ZaZb

kR2
s|Zb − Za|

≪ 1. (28)

This approximation is appropriate for evaluation of the first-order terms in (15) where

Zb − Za = L1 is large. Indeed, in this case for the optical table geometry λ = 1 µm and

Rs = Ls = 1 cm we get αs = 1.6× 10−5. For the Solar system geometry with Rs = 7 × 105

km (Sun radius), Ls = 1.5×108 km (the distance from Earth to Sun), and λ = 1 µm, we get

αs = 5 × 10−14. This parameter becomes even smaller for interstellar distances. Therefore

when we calculate G12 for a Gaussian absorber described by Eq. (25), the first-order terms

can be approximated as

G
(1)
12 (~ρ1, ~ρ2) ≡ G

(1a)
12 (L1, ~ρ1;L2, ~ρ2) +G

(1b)∗
12 (L2, ~ρ2;L1, ~ρ1)

≈ −2
∫

d2ρ e
− ρ2

2R2
o h∗

L1
(~ρ− ~ρ1)hL2(~ρ− ~ρ2). (29)

The opposite case of (28) occurs when Za = Zb. If furthermore q2 is much greater than

all coefficients that multiply ρ2 in all real and imaginary exponents in (15), then (19) can

be proven to approach a δ-function normalized to unity. This is the small aperture approx-

imation, applicable for the second-order terms of (15). Let us point out that within this

approximation, the object cannot create coherence between the transmitted and scattered

light unless the speckle size in the object plane approaches or exceeds the size of the object
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itself.

For the optical table geometry as described above, q2 exceeds all relevant parameters by a

factor of at least 3×104. The excess factors are much greater in all reasonable astronomical

geometries. Therefore we derive

G
(2)
12 (~ρ1, ~ρ2) ≈

∫

d2ρ e
− ρ2

R2
o h∗

L1
(~ρ− ~ρ1)hL2(~ρ− ~ρ2). (30)

For a Gaussian absorber case with L1 6= L2 we then arrive at the following approximate

expressions:

G
(0)
12 (~ρ1, ~ρ2) = G

(Rs)
12 (L1 + Ls, ~ρ1;L2 + Ls, ~ρ2),

G
(1)
12 (~ρ1, ~ρ2) = −2G(

√
2Ro)

12 (L1, ~ρ1;L2, ~ρ2), (31)

G
(2)
12 (~ρ1, ~ρ2) = G

(Ro)
12 (L1, ~ρ1;L2, ~ρ2).

It is easy to see that very similar expressions can be derived for the disk-shaped source

and/or object.

Let us first evaluate the correlation function g(2) found by substituting (31) into (7) in the

absence of the object, which is formally achieved by setting Ro = 0. In Fig. 17(a) we show

this function for a typical optics table parameters (L1 ≈ L2 = 1 m, Ls = 1 cm, λ = 1 µm),

while assuming that the detectors are symmetric relative to the line of sight: ~ρ1 = −~ρ2.
This allows us to use a single scalar parameter ρ, in the same way it was done in Fig. 13

and will be done in the following.

The correlation reduction due to non-zero ∆L is clearly visible. We would like to empha-

size again that this is not due to a limited coherence length of the source, but because of its

transverse coherence properties. We can interpret this result as follows. By placing the first

detector in the plane L1 we define the speckle pattern in this plane as the transverse mode

structure. These speckles may be further considered as mutually incoherent light sources.

As light from these sources propagates further, the coherence areas expand as well as over-

lap. The expansion causes the widening of the correlation function while the overlap causes

the contrast reduction due to multimode detection. Using the expression for normalized

Glauber correlation function for thermal light g(2)(0) = 1 + 1/M relating it to the number

of detected modes M , we can determine that in our example the longitudinal displacement

of the detector by ∆L = 6 mm has lead to the number of detected modes M ≈ 3. Note that

this interpretation differs from the speckle pattern behavior that one might observe e.g. on
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FIG. 17: (a) The correlation functions g(2)(∆ρ) in the absence of an object for Rs = 1 cm L1 = 55

cm and L2 = L1 +∆L. (b) The same correlation functions (solid lines) become narrower (dashed

lines) when a small (Ro = 1 mm) Gaussian absorbing object is inserted in the line of sight at the

distance Ls = 55 cm from the source.

a screen. In this case the speckle do not overlap and do not appreciably change in size for

small longitudinal translations.

Now let us “turn on” the object and investigate its effect on the correlation function.

If a small (Ro = 1 mm) object is placed half way between the source and the detectors,

the correlation function becomes narrower, which means smaller speckles, as can be seen

in Fig. 17(b). Let us point out that the ∆L = 0 case in Fig. 17(b) is consistent with the

Ro = 1 mm case from Fig. 13. This agreement validates the large-aperture and small-

aperture approximations made in this Section for an absorbing object.

To summarize this Section we notice that the previously made assumption L1 = L2

indeed provides the best intensity-interferometric observability of the thermal light sources

and of dark objects that may obscure such sources. Therefore we will continue using this

assumption in the Phase II research.

D. Phase I summary

During our Phase I NIAC research effort we have investigated the possibility of perform-

ing the intensity correlation “ghost imaging” of dark objects in space illuminated by thermal

light sources (stars) in the background. Our approach hinges on replacing the beam splitter,

indispensable for thermal light ghost imaging but infeasible for space applications, with the
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object itself. The object size, shape and position are predicted to imprint themselves on the

intensity correlation properties of the transmitted light, and could be subsequently extracted

from the correlation measurements. To investigate this concept we limited our discussion to

fully analytical model relying on a two-dimensional source and an object with Gaussian or

uniform (disk-like) distribution of luminosity or absorption, in the paraxial approximation.

We demonstrated the variation of the far-field speckle size due to the presence of the ob-

ject. We have shown that the speckle size variation is a non-trivial function of the object’s

properties and position. In some cases it allows us to obtain the information not available

from a direct intensity-based observation. As an example of such a measurement we have

demonstrated how the orbit plane orientation of a transient object can be determined from

the intensity-correlation measurements. This understanding has encouraged us to apply our

analytical model to a realistic space object imaging scenario, such as observed in the Ke-

pler mission. Prediction for the flux variation following from our model is very close to the

actual observation. The model also predicted a similar (about 10−4) fractional variation of

the speckle size.

We have carried out a preliminary SNR analysis for a correlation measurement, comparing

the SNR expected in such a measurement to the one observed in a direct flux measurement.

Our analysis has shown that, for parameters typical of the Kepler mission, the correlation

measurement SNR would be significantly worse than the intensity measurement SNR. The

situation, however, is expected to improve for narrow-band imaging, e.g. imaging based on

a selected spectral line.

To summarize the Phase I results in the context of the key questions posed in the begin-

ning of this chapter, we would like to point out the following.

1. The proposed approach is scientifically sound and conceptually feasible.

2. The proposed approach can be used in conjunction with the conventional observations,

providing access to the complementary data, such as e.g. an orbital plane.

3. Either entirely ground-based, or ground/space based mission architectures can be en-

visioned. We believe that the ground-based mission concept more fully takes the

advantage of the intensity interferometry approach being immune to atmospheric dis-

tortions.
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Based on these conclusions we decided that further research in this direction would be

justified. The programatic relations between the Phase I and Phase II NAIC research and

potential future missions as it was perceived in the end of Phase I is shown in Fig. 18. We

had submitted the Phase II proposal, which was awarded.

FIG. 18: Our vision of the relations between the underlying Ghost Imaging concept, the results of

Phase I research, the Phase II plans, and the future NASA missions.
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III. PHASE II GOALS AND ACCOMPLISHMENTS

The main objective of the Phase II research is to advance the intensity interferometric

imaging of non-radiating objects towards the level of a viable technology that is ready for

mission analysis and design. It should be emphasized that we are not suggesting to replace

conventional observation techniques with this technique. Rather, intensity interferometry is

envisioned to complement direct observations in such a way that the same detected signal can

be utilized for two different processing scenarios: conventional and intensity-interferometric

imaging.

Successful completion of the Phase II research would significantly upgrade the conven-

tional optical observation and detection techniques. While the maturity period of the pro-

posed technology is estimated to be of the order of a decade, and the benefiting missions are

not yet proposed, much can be learned from reviewing the on-going or near-future missions

that could have benefited from this technology. These include the aforementioned Kepler

and similar planetary detection missions; Hubble space telescope, aimed to study gravita-

tional lenses among other space objects, as well as other space and ground-based telescopes

included into SOFIA program; GALEX and other similar missions. We would not anticipate

any conceptual change in an upgraded mission’s architecture. Instead, by adding a second

observer and implementing a correlation measurement protocol in addition to the standard

intensity (photon flux) measurement, we expect to significantly increase the science data

return from these missions. Therefore we plan to significantly enhance the future missions

scientific return with only an incremental increase of their cost. The additional data will be

complementary to the intensity measurement data in that it may provide more information

about the object’s scattering, absorptive and refractive properties as well as the geometric

relations between the object and source sizes and object-source, object-detectors distances.

To facilitate the progress of our research in this direction, the following technical tasks

list was suggested for the Phase II:

1. Develop advanced numerical models better approximating the real space objects:

opaque disks, randomly scattering objects, phase objects mimicking gravitational

lenses.

2. Investigate the potential benefits of using other types of observables (higher-order
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correlation functions, intensity difference variance).

3. Carry out a lab demonstration of intensity-correlation imaging of dark objects.

4. Compile a list of astronomical objects that potentially could be observed by intensity-

correlation imaging. Supplement this list with observation requirements and con-

straints specific for each object.

5. Carry out the data rate, SNR, resolution (if applicable), contrast, observation baseline

and other fundamental parameters estimates for the selected objects. Verify that

application of our approach is indeed practical and beneficial.

The majority of these tasks has been accomplished as reported here. Others, e.g. Tasks

1 and 2, have lead to a new research direction which was deemed more important and

potentially more rewarding than the originally planed. As a result, during the Phase II the

accent has shifted from detection of dark celestial objects and their general characterization

towards ground-based, high-resolution intensity interferometric imaging. By imaging in this

context we understand mapping the column density (in the line-of-sight direction) of the

optical absorption for the amplitude objects, or of the phase gradient for the phase objects.

This change of the research focus was brought about by an unexpected realization that the

object’s shape is encoded in the intensity correlation function, gained during developing of an

advanced theoretical model. We then leveraged the knowledge available from “conventional”

intensity interferometry to learn how these images can be extracted. The potential benefits

of this unforeseen capability were thought to be greater than of the original plan, so the new

path was followed.

A. Advanced theoretical analysis

In this analysis we will depart from the Gaussian or disk models for the source and the

object, and consider more general distributions of their luminosity and opacity, respectively.

To do this we return to our model geometry shown in Fig. 10. We continue using paraxial

approximation with the propagation direction denoted as z, and assuming that the source

and the object are two-dimensional. We also assume that the detectors are coplanar: L1 =

L2 ≡ L. A departure from the latter assumption has been discussed earlier and concluded
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disadvantageous. Let a spatially-incoherent extended source be located at the z = 0 plane.

For the further analysis we will assume a quasimonochromatic thermal light source with

the central wavelength λ. In practice, this implies that narrow bandpass filters have to be

used. We denote the scalar positive-frequency component of the source field as E(~ρ, t) e−iωt,

where ω ≡ 2πc/λ is the central frequency, and c is the speed of light in vacuum. The field

amplitude is normalized to the square-root of the photon flux.

For spatially-incoherent thermal radiation, E(~ρ, t) is a Gaussian random function with

zero mean value but a nonzero phase-insensitive correlation function given by Eq. (11). A

more complete expression for this function is given by [54, 55]:

〈E∗(~ρ, t1)E(~ρ′, t2)〉 = Is(~ρ)λ
2Γ(∆t)δ(~ρ′ − ~ρ) , (32)

where ∆t = t2 − t1. In Eq. (32) ~ρ and ~ρ′ are two transverse coordinates in the z = 0

plane, Is(~ρ) is the photon flux density in photons per meter-square per second, and δ(~ρ) is a

two-dimensional Dirac delta function. It arises from a delta-function approximation of the

spatially-incoherent field’s transverse correlation, which is appreciably non-zero only when

|~ρ′ − ~ρ| is of the order of a wavelength. We have assumed in Eq. (32) that the correlation

function is separable into the product of the spatial and temporal parts, which is generally

true for quasimonochromatic thermal light.

Suppose that a dark object with a finite transverse extent is located at z = Ls plane, a

distance Ls away from the source. The object modifies the incident field by its transmission

function T (~ρo) which generally may be complex, i.e. may affect both phase and amplitude

of the incident light. Then, the field emerging from the object plane is given by

Eo(~ρo, t) = T (~ρo)
eikLs

iλLs

∫

d2ρE(~ρ, τs)e
ik |~ρo−~ρ|2

2Ls , (33)

where τs = t − Ls/c and the integration is performed over the source plane. Likewise, the

field in the detection plane z = Ls + L is given by

Ed(~ρd, t) =
eikL

iλL

∫

d2ρEo(~ρ, τ)e
ik

|~ρd−~ρ|2

2L , (34)

where τ = t−L/c, the integration is performed over the object plane, and d = 1, 2 represents

a detector.

As before, let the detections be performed by two pinhole photo detectors that have

equal sensitive areas Ad and quantum efficiencies η and are located at ~ρ1 and ~ρ2 of the
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z = L + Ls plane. We also assume that the detectors are small enough to neglect the

field variation across Ad. The mean photocurrents generated by these detectors in response

to the incident fields Ed(~ρ, t) are given by Eq. (8). The correlation between the intensity

fluctuations observed by these two detectors located at ~ρ1 and ~ρ2 is given by Eq. (9), and

the correlation observable by Eq. (10).

Deriving (10) we took advantage of the Gaussian moment factoring for the fourth-order

moment of the detected fields [54], combined with the assumption that hm(t) blocks DC.

Thus, the correlation signature of interest depends on the phase-insensitive correlation func-

tion of the detected fields.

Immediately after the object the coherence has a form

〈E∗
o(~ρ1)Eo(~ρ2)〉 = T ∗(~ρ1)T (~ρ2)e

ik
~ρs·~ρd
Ls KO(~ρd;Ls), (35)

where ~ρs ≡ (~ρ1 + ~ρ2)/2, ~ρd ≡ ~ρ2 − ~ρ1, and

KO(~ρ;L) ≡
1

L2

∫

d2ρ′ Is(~ρ′)
−ik~ρ·~ρ′/L. (36)

To propagate coherence (35) further in the analytical form we need to make the approxi-

mations we have avoided in the earlier example of the Gaussian source and object. We note

that the Fourier transform relation (36) between Is and KO implies that the latter’s width

is of the order of λLs/Ds, where the source size Ds is defined as the diameter over which

the photon-flux density is appreciably greater than zero. This width corresponds to a size

of the speckle cast by the source onto the object. In many important cases this speckle size

is much smaller than the object features we wish to resolve. Then we can write

T ∗(~ρ1)T (~ρ2) ≈ |T (~ρs − ~ρo)|2 = 1− A(~ρs − ~ρo), (37)

where we have introduced a displacement ~ρo of the object’s center from the line of sight and

converted the field transmission T to intensity absorptionA. Note that in this approximation

the phase part of T drops out, so a purely phase object would not alter the coherence

propagation within this model.

Approximation (37) notably simplifies our analysis for propagating the coherence to the

detector plane. We derive

〈E∗
d(~ρ1)Ed(~ρ2)〉 = eik

~ρs·~ρd
L+LsKO(~ρd;L+ Ls)−KD(~ρs, ~ρd) (38)
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where the first term represents the source’s correlation signature in the absence of any object

(i.e., free-space propagation of light over the distance L+ Ls), and

KD(~ρs, ~ρd) ≡
eik

~ρs·~ρd
L

−ik
~ρd·~ρo

L

λ2L2

∫

d2ξA(~ξ)e−ik
~ρd·

~ξ

L

∫

d2ζKO(~ζ;Ls)e
ikL+Ls

LLs
(~ρo+~ξ)·~ζe−ik ~ρs·~ζ

L (39)

is modification due to the object. Using the convolution theorem we simplify expression to

KD(~ρs, ~ρd) = L−2eik
(~ρs−~ρo)·~ρd

L

∫

d2ξIs

(

β(~ρo + ~ξ)− (β − 1)~ρs

)

A(~ξ)e−ik
~ρd·

~ξ

L , (40)

where β ≡ 1 + Ls/L.

Without a considerable loss of generality, we can now assume that the detectors are

positioned symmetrically about the line of sight, so that ~ρs = 0. Then, substituting Eq. (40)

into Eq. (38), and then substituting the result into Eq. (10), we arrive at

C(~qd) ≈
C

L4β4

∣

∣

∣

∣

Ts
(

~qd
β

)

− β2

∫

d2ξIs

(

β(~ρo + ~ξ)
)

A(~ξ)e−i~qd·~ξ
∣

∣

∣

∣

2

, (41)

where Ts(~q) ≡
∫

d2ρ Is(~ρ)e
−i~q·~ρ, and ~qd ≡ k~ρd/L.

To continue the analytical evaluation we have to make our second important approxima-

tion, namely
Do

Ds
β ≪ 1 . (42)

In (42) Do is the diameter over which the centered object’s absorption is appreciable. Physi-

cally, this means that the angular size of the object (as seen by the observer) is much smaller

than the angular size of the source. Let us point out that ρoβ/Ds ≪ 1 is not required, so

the approximation (42) is applicable even to small objects that are far away from the line of

sight and do not obscure the source. The signal from such objects is of course vanishingly

small.

Approximation (42) implies that in the regions where A(~ξ) is non-vanishing,

Is

(

β(~ρo + ~ξ)
)

is nearly constant and therefore can be taken out from the integral:

C(~qd) ≈
C

L4β4

∣

∣

∣

∣

Ts
(

~qd
β

)

− β2Is (β~ρo)A(~qd)e−i~qd·~ρo
∣

∣

∣

∣

2

, (43)

where

A(~q) ≡
∫

d2ρA(~ρ)e−i~q·~ρ. (44)

In Eq. (43) the first term inside the absolute-square is due to the source alone, while the

second term is the object-induced modification to the correlation function. It is interesting to



42

notice that in the absence of an object, A(~ρ) ≡ 0, the result (43) quite expectedly expresses

the van CittertZernike theorem. Remarkably, in the absence of the source term, Eq. (43) is

reduced to

C(~qd) ≈
CIs(β~ρo)
L4β2

|A(~qd)|2 , (45)

which again expresses the van CittertZernike theorem, but now for the object. Since the

object is non-radiating, one may interpret the result (45) as the “speckles of darkness” cast

by the object. This phenomenon can be viewed as a realization of the Babinet’s principle

in intensity interferometry. Of course, it is not possible to arrive to the limit (45) by simply

turning off the source, Is(~ρ) ≡ 0, because it would turn to zero the entire expression.

However this limit can be achieved when the source speckle is much smaller than the object

speckle, or equivalently, when the source angular size far exceeds that of the object. This

limit is therefore consistent with approximation (42). If it is satisfied, the source part of the

correlation function may still be large, but will be localized much tighter than the object

part, which may have a relatively small magnitude.

To quantify the relative magnitude of the object signature we note that Ts(0)/Is(0) and
A(0) are the source and the object effective areas, respectively (or the actual areas, if

Is = const for the entire source and A = 1 for the entire object). Therefore it is easy

to see that the ratio β2A(0)Is(0)/Ts(0) ≈ (βDo/Ds)
2 ≪ 1 is the fraction of the optical

power radiated by the source that is absorbed by the object. This proves an important

statement made earlier, that the object signature in the correlation measurement has the

same magnitude as in the direct intensity measurement.

Now we can also understand the earlier discussed stereoscopic aspect of the intensity

interferometric imaging, which has allowed us to distinguish the orbits orientations for tran-

sients, at a more fundamental level. At the heart of this capability is the phase between

the source and object terms of (43) which can mediate their constructive or destructive

interference. This phase depends on the object displacement ~ρo projected onto the detec-

tors’ baseline ~ρd, and has no counterpart in conventional observations based on intensity

measurements. However, considering the synthetic aperture analogy, we notice that this

phase variation corresponds to the object passing through Fresnel zones of a fictitious tele-

scope with aperture ρd. It also should be noted that this exponential arises from a Fourier

transform of a shifted object A(~ρ + ~ρo) and can be absorbed into A(~qd) without a loss of

generality.
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Below we will investigate two analytically tractable examples of objects crossing the line

of sight of a thermal light source, in close simulation of an exoplanet observation scenario.

For a disc-shaped source and object,

Is(~ρ) = Is(0)circ(|~ρ|/rs) ≡











Is(0) for |~ρ| ≤ rs

0 otherwise,
(46)

and

A(~ρ) =











1 for |~ρ| ≤ ro

0 otherwise,
(47)

where ro ≪ rs. Substituting these into Eq. (43), we can write

C(x, θ) =
4CP 2

L4β4

∣

∣

∣

∣

J1(πx/β)

πx/β
− β2γ2circ(βxo)

J1(πγx)

πγx
e−iπxxo cos(θ)

∣

∣

∣

∣

2

, (48)

where x ≡ 2|~ρd|rs/(λL) is the normalized displacement of the detectors, xo ≡ |~ρo|/rs is the
fractional displacement of the object relative to the source radius, θ ≡ 6 ~ρd− 6 ~ρO is the angle

between the vectors ~ρd and ~ρO, P ≡ Is(0)πr
2
s is the photon flux of the source, and γ ≡ ro/rs

is the object-to-source size ratio.

Let us consider the image signature from a differential observable, which is given by a

difference of the measurement with no object, and one with an object present, while nothing

else changes. We will assume that the object is much smaller than the source, γ2 ≪ 1. Then

a linearized differential observable is given by the cross-term of Eq. (48) as

∆C(x, θ) ≈ −2C γ
β

(

2P

πxL2

)2

circ(βxo)J1(πx/β)J1(πγx) cos
(

πxxO cos(θ)
)

. (49)

To evaluate the magnitude of the object’s signature we need to specify the parameters

of Eq. (49). Typical values of these parameters are given in Table III for two scenarios: a

table-top laboratory demonstration, and an Earth-size planet partially occultating a Sun-

size source observed from a distance equivalent to that of Kepler 20f. In Fig. 19 we show

the results for C(x, θ) and ∆C(x, θ) with a fixed object displacement xo, for both the lab

and the stellar examples.

From Fig. 19 we see that the object signature is mainly manifested by the variation of

the correlation function width. We plot this width in Fig. 20 as a function of displacement

xo within the range of approximation (42) validity. This plot corresponds to an observation
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Variable λ [m] Ls [m] L [m] rs [m] rO [m] β-1 γ λL/(2rs) [m]

Lab 10−6 0.5 0.5 0.01 0.001 1 0.1 2.5 · 10−5

Kepler 10−6 1.496 · 1011 8.948 · 1018 6.955 · 108 6.371 · 106 1.67 · 10−8 9.16 · 10−3 6.433 · 103

TABLE III: Parameters for a typical lab demo and a stellar imaging example similar to Kepler 20f.
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FIG. 19: The normalized correlation measurement observable C(x, θ) (left column) and its object-

induced variation ∆C(x, θ) (right column) for the lab demo case (upper row) and stellar imaging

case (lower row) are plotted as a function of x for θ/π = 0, (the inner curve), 0.1, 0.2, 0.3, 0.4 and

0.5 (the outer curve). The object displacement from the line of sight xo is fixed as shown.

of the object’s transient across the source, crossing the line of sight when xo = 0. While

the intensity measurement at x = 0 is obviously independent of the transient direction,

the θ-dependence of the correlation measurement in Fig. 20 is evident. Thus in the stellar

imaging example, one would be able to learn about the planetary ecliptic plane orientation
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from this measurement.
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FIG. 20: Widths of the correlation functions from Fig. 19 normalized to the speckle width

λL/(2rs) as a function of the object’s transient parameter xo for θ/π = 0, (strongest dependence),

0.1, 0.2, 0.3, 0.4 and 0.5 (constant).

Returning to our initial model of Gaussian profiles of the source and object, we have

Ts(~ρ) = e−2|~ρ|2/r2s , A(~ρ) = e−2|~ρ|2/r2O , (50)

where again rO ≪ rs. Substituting these into Eq. (43) and carrying out similar approxima-

tions, we obtain

C =
CP 2

G

L4β4

∣

∣

∣

∣

e
−π2x2

8β2 − β2γ2e−2β2x2
oe−

π2

8
γ2x2

e−iπxxo cos(θ)

∣

∣

∣

∣

2

, (51)

and

∆C ≈ −2 CP
2
G

L4β2
γ2e−2β2x2

oe
−π2x2

8β2 e−
π2

8
γ2x2

cos
(

πxxO cos(θ)
)

(52)
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where PG = Is(0)πr
2
s/2, and all other variables have been defined earlier. For the stellar

interferometry case with β ≈ 1, we obtain

C ≈ CP
2
G

L4

∣

∣

∣
e−

π2

8
x2 − γ2e−2x2

oe−
π2

8
γ2x2

e−iπxxo cos(θ)
∣

∣

∣

2

, (53)

and

∆C ≈ −2CP
2
G

L4
γ2e−2x2

oe−
π2

8
(1+γ2)x2

cos
(

πxxo cos(θ)
)

(54)

In Figs. 21 and 22 we have plotted the same results as before, but now for the Gaussian

case.
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FIG. 21: Gaussian case equivalent of Fig. 19.

Let us note that despite some quantitative difference between the disk and Gaussian

models considered above, they both capture all essential aspects of the object signature.

Therefore we can use either the disk model for more realistic approximation of stellar or

planetary objects, or Gaussian model for more transparent analytical treatment.
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FIG. 22: Gaussian case equivalent of Fig. 20.

B. On observability of a shadow gradient

It should be mentioned that while the object shadow observed at any single point does

not provide information about the transient direction, the shadow gradient may. We need

to investigate this possibility in order to determine if and when it can compete with the

stereoscopic feature of the intensity interferometry approach. To compare our intensity

correlation results with direct intensity gradient measurements, let us evaluate

〈i(~ρ, t)〉 ≡ ηAd

∫

dτ〈|Ed(~ρ, τ)|2〉hlp(t− τ), (55)

where hlp is now the low-pass filter response function, allowing for the dc intensity mea-

surement. The field absolute square in the integrand is easily obtained by evaluating the
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right-hand side of Eq. (38), with the substitutions ~ρs = ~ρ and ~ρd = 0, which yields

〈|Ed(~ρ, τ)|2〉 = KO(0;L+ Ls)−KD(~ρs, 0) =
Ps

L2β2

[

1− β2In
(

β~ρo − (β − 1)~ρ
)

A(0)
]

. (56)

Here Ps ≡
∫

d2ρIs(~ρ), and In(~ρ) ≡ Is(~ρ)/Is(0) is the normalized source intensity. It is

worthwhile to recall that the mean image signature derived here is based on the same

assumptions and approximations as the correlation observable derived above.

Substituting Eq. (56) into Eq. (55) we assume that
∫

dthlp(t) = 1 (i.e., unity dc gain)

and drop the time variable in the stationary photo current. We arrive at

〈i(~ρ)〉 = ηAPs

L2β2

[

1− β2In
(

β~ρo − (β − 1)~ρ
)

A(0)
]

(57)

as the direct observation signature. Here, the first term is the uniform intensity illumination

due to the unobscured source, and the second term is the variation due to the object. The

shadow gradient, which could potentially be used for determining the transient direction,

can be defined as

1

〈i(~ρ)〉
∂〈i(~ρ)〉
∂~ρ

≈ β2(β − 1)I ′n
(

β~ρo − (β − 1)~ρ
)

A(0) . (58)

For the order-of-magnitude estimate, we will assume Gaussian distribution for both the

source luminosity and the object opacity (50). Then A(0) = πr2o/2, and the maximum value

of I ′n(ρm) = 2/rs is achieved at ρm = rs/2.

To make a fair comparison with the intensity interferometry measurement, we need to

multiply the gradient (58) by the measurement baseline, which is of the order of a speckle

size 2(L+ Ls)/(krs). We arrive at

∆〈i〉
〈i〉 ≈

λLs

πR2
s

β3γ2. (59)

We use expression (59) to evaluate the relative intensity variation across the speckle

width due to the shadow gradient, and compare it with other object’s signatures such as

the relative intensity variation due to the object’s presence and the normalized variation

of the speckle width, see Table IV. As expected, the magnitudes of the intensity variation

signature and of the correlation measurement signature (the first two lines of Table IV) are

very close. Intensity gradient, on the other hand, provides a far inferior signature (the third

line of Table IV), which is not useful e.g. for determining the transient plane. This is the

case because the sharp shadow condition [56] is opposite to assumption (42). Therefore

we conclude, that the correlation measurement indeed provides the information unavailable

from the intensity measurements.
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Observable (normalized) Lab demo Stellar imaging

Intensity variation 9× 10−2 2× 10−4

Speckle width variation 7× 10−2 1.7 × 10−4

Intensity variation per speckle 1.3 × 10−4 1.0× 10−17

TABLE IV: Magnitude of the object’s signature in three types of observables and the parameter

sets from Table III.

C. Signal-to-noise ratio

Evaluating the feasibility and efficiency of correlation-based observations in Astronomy

requires a careful study of the signal-to-noise ratio (SNR), which strongly depends on the

object of interest and the imaging geometry. The conventional approach to the intensity

interferometry SNR [41, 57] is based on the analysis of fluctuation of the photo currents

i1(t) and i2(t) produced by the detectors in response to the incident optical field. This

analysis can be easily generalized for the photon-counting detectors. The mean values of

these photocurrents are given in Eq. (8). The SNR of the intensity correlation observable

C(~ρ1, ~ρ2) given by Eq. (9) is defined as

SNR ≡ 〈C〉
√

Var(C)
. (60)

This SNR has been evaluated in [57]. While its general formula is rather cumbersome,

two important limits can be considered for the thermal light with the single-mode Glauber

correlation function g(2)(0) = 2.

In the limit of a qusi-monochromatic source or very high-speed photodetectors and coin-

cidence electronics, Tc ≫ TB. For such a “narrowband” case, [57] predicts

SNR(nb) =

√
TTB

Tc

N
√

1 + 2N(TB/Tc) + 5N2(TB/Tc)2
, (61)

where N ≡ ηAd(Tc/T )
∫ T

0
dt 〈|Ed(t)|2〉 (for d = 1, 2) is the mean photoelectron number

per longitudinal mode (or equivalently, per coherence time) of the fields incident on the

detectors, and T is the total time of measurement. The terms in the denominator of (61)

have intuitive interpretations. The first term, which is independent of N , is due to the

shot noise of the two detectors. The third term, with the N2 dependence, is excess noise

resulting from the statistical fluctuations of the incident power on the detectors. This term
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is sometimes referred to as relative intensity noise. The middle term, with the linear N

dependence, is a result of the beating between the intensity fluctuations and shot noise.

In the shot-noise-limited regime N ≪ 1 holds, i.e., the mean number of photoelectrons

per mode is very small, and the SNR can be approximated as

SNR
(nb)
N≪1 =

√
TTB

Tc
N. (62)

In the opposite regime with many photoelectrons per mode, N ≫ 1, the SNR saturates to

its maximum value

SNR
(nb)
N≫1 =

√

T

5TB

. (63)

In the opposite “broadband” limit of slow electronics or a broad-band source, when

Tc ≪ TB, [57] predicts

SNR(bb) =

√

T

TB

N
√

1 + 2N + 2N2Tc/TB

(64)

which has the following limits:

SNR
(bb)
N≫1 =

√

TN

2TB(1 +NTc/TB)
and SNR

(bb)
N≪1 = N

√

T

TB
. (65)

The behavior of the N ≫ 1 limit in (65) depends on the product of a large number N

by a small number Tc/TB. Depending on the relation between these numbers, the SNR may

continue to increase with the increasing signal, or may reach saturation as in (63). The

N ≪ 1 limit of (65) is often encountered stellar intensity interferometry. This result is

usually written as

SNR
(bb)
N≪1 = n(λ)Adη

√

TΩB/2, (66)

where the spectral density n(λ) = T−1
∫ T

0
dt 〈|Ed(λ, t)|2〉 is the mean number of thermal light

photons per unit area, per unit frequency (around the central wavelength λ) and per unit

time [59], and the electronic bandwidth ΩB = 2/TB. Equivalently, (66) can be written in

terms of the photon flux F defined as the number of photons per unit area and per unit

time within an optical bandwidth ∆λ around the central wavelength λ:

SNR
(bb)
N≪1 =

λ2F

2πc∆λ
Adη

√

TΩB/2. (67)

For direct intensity measurements, the signal is proportional to the electric charge ac-

quired during an integration time T :

Q =

∫ T

0

dt 〈i(t)〉, (68)
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where the mean photocurrent is given by Eq. (55). In this case the SNR is defined as

SNRQ ≡
〈Q〉

√

〈(Q− 〈Q〉)2〉
, (69)

which leads to

SNRQ =

√

T

Tc

N

1 +N
, (70)

where all parameters are as defined before.

To separate the SNR dependence on the integration time T , which is common to both

the correlation and direct intensity measurements, it is convenient to normalize the SNR

to
√

T/Tc. Fig. 23 shows thus normalized SNR of a direct intensity measurement (70) and

the asymptotic approximations (62) and (63) of a correlation measurement, as functions

of the mean photoelectron number per mode. As seen from this figure, the correlation

measurement SNR can approach the direct intensity measurement SNR for the sources with

high spectral brightness N ≈ 1.
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FIG. 23: The normalized intensity SNR (red) and correlation measurement SNR for TB/Tc = 0.1

(black), 0.5 (green), and 1 (blue).

The shot-noise limited correlation-based measurements typically have worse SNR than

direct intensity measurements due to the stronger dependence of the former on the incident

average photon number N/Tc. However in the excess-noise limited regime, the correlation

measurements’ SNR improves due to the fact that such measurements can distinguish source

fluctuations from those caused by an object better than the direct-intensity measurement.

Note, however, that the plots in Fig. 23 compare the SNRs for equal numbers of pho-

toelectrons per mode relying on the assumption TB < Tc. This assumption implies strong
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spectral filtering which reduces the total photon flux available for the correlation measure-

ment. The direct intensity measurement, on the other hand, can integrate over a very wide

optical bandwidth without penalty. We have already discussed this aspect of correlation

imaging technique considering the example of Solar spectrum, see Fig. 11 and related dis-

cussion. Again, let us keep in mind that the spectral filtering penalty may be reduced for

intrinsically narrow-band imaging, e.g. imaging using a specific bright or dark spectral line.

A narrow spectral feature will lead to the higher spectral brightness and give the correlation

imaging advantage according to Fig. 23.

The SNR analysis presented above is typically performed for the “conventional” intensity

interferometry. Here we are interested not in the full intensity correlation signal but rather

in the signature of a dark object present in this signal. This signature may be weak relative

to the baseline signature from the source alone and often can be treated as a perturbation.

The easiest way to detect such a perturbation is by a differential measurement, that is,

by subtracting the signal of the source without the object from the source with the object

present. Many observation scenario (such as e.g. planets transients) naturally support

such a measurement technique. However, while a differential measurement can eliminate

the source’s baseline and improve the visibility of the object’s perturbation, it will not

eliminate the noise contributed by the source. Therefore we need to derive the SNR of the

differential measurement in order to develop a better appreciation for the sensitivity of this

measurement.

The differential measurement observable can be expressed as ∆C(~ρ1, ~ρ2) = C1(~ρ1, ~ρ2) −
C0(~ρ1, ~ρ2), where C1 is the Eq. (9) measurement with the object of interest present, and

C0 is the same measurement without the object. As typically these two measurements are

separated by a duration significantly longer than the coherence time of the photocurrent

fluctuations, the two measurements can be assumed statistically uncorrelated. Thus, the

variance of the measurement is,

Var(C1 − C0) = Var(C1) + Var(C0) ≈ 2Var(C0) (71)

where the last approximation arises from our earlier observation that the object’s perturba-

tion signature is significantly weaker than that of the source. Consequently, in this regime

it can be assumed that the variance of either measurement will be dominated by the source-

induced shot- and excess-noise fluctuations.
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The SNR can, therefore, be expressed as

SNR ≈ |∆C|
√

2Var(C0)
(72)

which is different from Eq. (60). We have derived the numerator of expression (72) for the

disk and Gaussian source and object profiles (see Eqs. (49) and (52), respectively), so here

we focus on the denominator. Using the photocurrent moments discussed above (8), we can

express the variance as

Var(C0) =

∫

dτ1

∫

dτ2

∫

dτ ′1

∫

dτ ′2Kh(τ1, τ2)Kh(τ
′
1, τ

′
2)Ki(τ1, τ2, τ

′
1, τ

′
2) , (73)

where

Kh(τ1, τ2) = T−1

∫ T/2

−T/2

dt h(t− τ1)h(t− τ2) , (74)

and

Ki(τ1, τ2, τ
′
1, τ

′
2) = (ηAd)

2
[

〈|E1(τ1)|2|E2(τ2)|2〉δ(τ1 − τ ′1)δ(τ2 − τ ′2) +

+ ηAd〈|E1(τ1)|2|E1(τ
′
1)|2|E2(τ2)|2〉δ(τ2 − τ ′2) +

+ ηAd〈|E1(τ1)|2|E2(τ2)|2|E2(τ
′
2)|2〉δ(τ1 − τ ′1) + (75)

+ (ηAd)
2
{

〈|E1(τ1)|2|E1(τ
′
1)|2|E2(τ2)|2|E2(τ

′
2)|2〉 −

− 〈|E1(τ1)|2|E2(τ2)|2〉〈|E1(τ
′
1)|2|E2(τ

′
2)|2〉

}

]

.

The terms in Eq. (75) have intuitive physical meaning: the first term is the covariance of

common-mode fluctuations in the shot noise (i.e., the conditional variance) from the two

detectors, the next two terms are the covariances between the shot noise fluctuations in one

detector and the signal fluctuations in the other detector, and the last term is the covariance

between the signal fluctuations (i.e., the conditional mean-square) from the two detectors.

In order to evaluate Eq. (73), we first perform Gaussian moment factoring [54] on each

term in Eq. (75). This yields expressions for every term in Eq. (75) in terms of KD(~ρ1, ~ρ2),

which is given in Eq. (40). Next, we assume that the ac-coupled photodetector impulse

responses h(t) are Gaussian-shaped with bandwidth ΩB, namely,

h(t) =

√

πΩ2
B

2
e−t2Ω2

B/8 −
√

πΩ2
N

2
e−t2Ω2

N/8. (76)

The second term here represents the dc notch with bandwidth ΩN . Henceforth, we assume

that ΩB ≫ ΩN and ΩNTc ≪ 1, which allows us to effectively neglect the notch’s contribution
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to any nonzero-frequency terms. Our final assumption in evaluating the Eq. (73) is that the

integration time T is much longer than both the detector’s response time (TΩB ≫ 1) and

the optical coherence time (T/T0 ≫ 1), such that we may approximate Eq. (74) as

Kh(τ1, τ2) = T−1rect

( |τ1 + τ2|
T

)

[h ⋆
←−
h ](τ2 − τ1) , (77)

where ⋆ denotes convolution and
←−
h denotes time reversal.

Skipping the steps of evaluating each term in the variance expression, we write the final

result for the SNR in a differential measurement:

SNR(diff) =
cos(θd)α

√

σ2
ss + σ2

se + σ2
ee

. (78)

Assuming symmetric detectors’ positions (~ρs = 0), we can write

θd = πxxo cos(θ), (79)

and

α ≡ K
(n)
D (~ρs, ~ρd)

KO(0;L+ LS)
= β2γ2











circ(βxO)
2J1(πγx)

πγx

e−2β2x2
Oe−π2γ2x2/8

(80)

where the upper case correspond to the disk model and the lower case correspond to the

Gaussian model. When γx ≪ 1, β ≈ 1, and βxO < 1 (as in most of the stellar imaging

cases), both instances simplify to α ≈ γ2.

The three terms in the denominator of the SNR(diff) expression are given by

σ2
ss ≡

√
2√

πTΩBΓN2



1 +
TcΩBΓ

√
8

√

1 +
Ω2

BT 2
c

8



 , (81)

σ2
se ≡

2
√
2

TΩBΓN

1 +
T 2
0Ω

2
B

16
√

1 +
T 2
0Ω

2
B

32



1 +

√
2TcΩBΓ√

3

√

1 +
T 2
0Ω

2
B

32
√

1 +
T 2
0Ω

2
B

8

√

1 +
T 2
0Ω

2
B

24



 ,

σ2
ee ≡

√
2π

TΩBΓ

√

1 +
T 2
0Ω

2
B

16



1 + Γ2 +
TcΩBΓ

√

1 +
Ω2

BT 2
c

8



1 + Γ +

√

1 +
T 2
0Ω

2
B

16
√

1 +
T 2
0Ω

2
B

8







 ,

where

Γ ≡
∣

∣

∣

∣

KO(~ρd;L+ Ls)

KO(0;L+ Ls)

∣

∣

∣

∣

2

∈ [0, 1] (82)

is the equal-time correlation coefficient between the photocurrents registered at the two

detectors, given in terms of KO which is defined in Eq. (36).
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Just as before, it is useful to consider two limiting cases of the SNR(diff) expression:

the case of broadband incident light (ΩBTc ≪ 1), and of narrowband light (ΩBTc ≫ 1),

relative to the photodetectors bandwidth. Because naturally occurring light sources are

typically broadband and are filtered optically at the measurement plane, the broadband

limit will usually hold in practical applications. However, with the pseudothermal light

sources commonly used in the laboratory settings, the narrowband limit can be applicable.

In the broadband (ΩBTc ≪ 1) limit, the expression of Eq. (78) simplifies to

SNR(diff−bb) ≈ N
√

TΩB/2 cos(θd)α
4
√
2πΓ2

√

1 + 2
√
πN + π(1 + Γ2)N2

, (83)

which has the following low and high signal limits:

SNR
(diff−bb)
N≪1 =

λ2F

2πc∆λ
Adη

√

TΩB/2 cos(θd)α
4
√
2πΓ2 (84)

(c.f. Eq. (67)), and

SNR
(diff−bb)
N≫1 = α cos(θd)

√

ΓTΩB√
2π(1 + Γ2)

. (85)

Figure 24(a) shows the transition of the normalized SNR from the photon-starved region to

its maximum, as a function of N .

In the narrowband (ΩBTc ≫ 1) limit, on the other hand, Eq. (78) yields

SNR(diff-nb) ≈ α cos(θd)

√

ΓT

Tc

[
√
2(1 + Γ)√
πN2TcΩB

+
(1 + 2Γ)

N
+

√
π

2
√
2

(

1+2(
√
2+1)Γ+(1+2

√
2)Γ2

)

]−1/2

.

(86)

In this case the photocurrent correlation time is approximately Tc, so the SNR is now

proportional to
√

T/Tc. For N
2TcΩB ≪ 1, the signature is photon-starved and the SNR has

a linear dependence on mean photon flux. As N increases to N ≫ 1, the SNR saturates at

its maximum value,

SNR
(diff−nb)
N≫1 =

√

T

Tc

α cos(θd)
√

2Γ
√

2/π
√

1 + 2(
√
2 + 1)Γ + (1 + 2

√
2)Γ2

. (87)

Figure 24(b) illustrates the variation of the normalized SNR as a function of N in the

narrowband case.

In principle, we can chose the narrow band measurement strategy for an intrinsically

broadband source by implementing spectral filtering at the detectors so that Ω ≪ ΩB. In



56

1E-3 0.01 0.1 1 10 100 1000
1E-3

0.01

0.1

1

 

 

SN
R

 in
 u

ni
ts

 o
f 

co
s(

d)(
T

B
/2

)1/
2

Mean photoelectrons in Tc

(a)

1E-3 0.01 0.1 1 10 100 1000
1E-3

0.01

0.1

1

 bTc = 10
 bTc = 100
 bTc = 1000

(b)

 

 

SN
R

 in
 u

ni
ts

 o
f 

co
s(

d)(
T/

T c)1/
2

Mean photoelectrons in Tc

FIG. 24: (a) The normalized signal to noise ratio of the differential intensity covariance measure-

ment is plotted as a function of N for the broadband case. In this case the normalized SNR is

independent of the ΩBTc product. (b) The same is plotted for the narrowband case. In this case

the normalized SNR in the N ≪ 1 regime has a dependence on the ΩBTc product such that a larger

SNR is attained for larger product, but the maximum (attained when N > 1) is independent of

this product. In both cases Γ = 1 is assumed.

the beginning of this section we have already assumed following this approach. It is easy to

see that such filtering would not change the spectral brightness of the source, and therefore

will not change N . Comparing Eqs. (83) and (86) in the limit of N ≪ 1 we then find

SNR
(nb)
Stel =

SNR
(bb)
Stel√
2

. (88)

This result indicates that for a uniformly broadband thermal light source the benefit of

increasing the correlation function contrast by going into the single-mode detection regime

via spectral filtering is negated by the consequent signal reduction. Similar conclusion was

reached in [9] by different reasoning.

Let us estimate the SNR for the two examples from Table III, assuming Γ = 1 and

cos(θd) = 1. In the Lab demo case we assume that a laser-based pseudothermal light source

is implemented and the narrowband limit is appropriate. With such a source the N ≫ 1

regime can be easily achieved, so we can use the maximum SNR value (87). This yields

SNRLab ≈ 1.28 β2
Labγ

2
Lab

√

T/Tc = 1.62 × 10−2
√

T/Tc. Thus, with a 1 MHz-wide laser we

would need approximately 4 ms integration time to obtain a statistically significant signal
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with SNRLab > 1. Remarkably, for a better measurement with this scenario one needs a

broader-band laser (provided that it remains narrowband compared to the detectors).

To evaluate the SNR in a stellar system measurement, let us return to Eq. (84) and

express the photon flux F via the apparent magnitude Ma of the source using the standard

expression

F [s−1m−2] = 1.51F0[Jy]
∆λ

λ
107−Ma/2.5, (89)

where the constant F0 depends on the spectral band [58]. We obtain

SNR
(diff)
Stel = 1.51 · 107−Ma/2.5Adηγ

2λF0

2πc

√

ΓT/TB cos(θd)
4
√
2π, (90)

where all parameters are measured in SI units. In the following we will assume Γ = 1,

cos(θd) = 1 as we did for the Lab example above. It is then convenient to rewrite (90) in

the form

SNR
(diff)
Stel ≈ 1.27 · 10−8−Ma/2.5Ad[m

2]λ[µm]ηγ2F0

√

T/TB. (91)

Returning to the Kepler-20f example, we notice that Kepler-20 is a magnitude 12.497

star in the V+R spectral band [3], characterized by the central optical wavelength λ ≈ 500

nm and F0 ≈ 3350 Jy. Let us assume that we have a unity-efficient (η = 1), ultrafast photo

detectors with TB = 50 ps that are coupled to the same kind of telescopes as were actually

used in the Kepler mission, with light collection area of 1.54 m2. Then from (91) we find

SNR
(diff)
Stel ≈ 4.63 · 10−5γ2

Stel

√

T [s]. (92)

Substituting γStel = 9.16 · 10−3 form Table III, it is easy to find that in order to reach the

SNR value of 10−4, achieved in the direct intensity measurement [2], one would have to

collect signal for some 6.6 · 108 seconds, or 21 years.

The discouraging result for Kepler20f system’s SNR is largely due to a very low brightness

of the host star and very small planet-to-star diameter ratio γ. We however can follow this

approach to evaluate the systems with more favorable parameters. For this analysis we will

assume the light collection area Ad = π(2m)2 ≈ 12.6m2 as for the CTA project’s SST1M

telescope, the full detection efficiency η = 0.5, and the detectors/electronics resolution time

TB = 1 ns. Then instead of (92) we obtain

SNR
(dif)
Stel ≈ 2.53 · 10−7−Ma/2.5F0γ

2λ[nm]
√

T [s]. (93)
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Let us allow some reasonable time for the measurement, e.g. T = 1 hour, and evaluate

the resulting SNR for intensity-interferometric detection of brighter stars’ exoplanets listed

in Table II. We skip the systems that lack the information necessary to carry out the

evaluation. These results are shown in the last column of Table V.

TABLE V: Parameters of some brightest stars that are known to have a planet, potentially suitable

for intensity interferometry observations.
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We see that only among the exoplanet systems there are many good candidates for

intensity-interferometric observations with the SNR matching or exceeding that achieved

in Kepler-20f observations. Of course, the required SNR level will depend on the specific

measurement, which will be possible to obtain by scaling the results from Table V according

to Eq. (93).

To summarize this section, we admit that in general, the SNR of correlation measurements

and especially of differential measurements detecting small dark objects is considerably worse

than of direct intensity measurements. Obviously, in order to have a realistic assessment of

the added value of correlation-based measurements for imaging space objects, one must take

into account additional factors such as stray light, detector aging, natural variation of the

source brightness and other practical concerns that are usually omitted in the SNR analyses

published to date. The detectors’ dark noise, for example, may be particularly important in

cases when the incident photons flux is low. This implies an extensive analysis that needs

to be carried out for each potential system of interest individually. We include this research

into the follow-on proposals that are intended to advance the present NIAC research.

D. From detection to imaging

Deriving the correlation observable (43) we have noticed that it captures both the source

and the object’s images (i.e., the transverse distribution of their luminosity and opasity

column densities, respectively). This suggests that we can pursue a much more ambitious

goal than to just detect a dark object’s presence or even to establish its transient direc-

tion. We can attempt to reconstruct the object’s image or contour. Following the differen-

tial measurement approach, we assume that the source shape is well-known (perhaps from

intensity-interferometric imaging without the object), and we need to reconstruct the object

shape. This problem falls into a general category of phase recovery from an absolute-square

Fourier transform. There are a few well-known approaches to this type of problems such

as the Cauchy-Riemann [10, 11, 60–62] and Gerchberg-Saxton [63–65] approaches. We have

adopted the latter approach and optimized it specifically to meet our goals.

A conceptual diagram of the Gerchberg-Saxton algorithm is shown in Fig. 25. The al-

gorithm is based on a cyclic manipulation with the initially unknown image and its Fourier

transform, of which only the absolute value is known. During this process, additional infor-
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FIG. 25: A conceptual diagram of the Gerchberg-Saxton iterative algorithm.

mation is injected into the cycle. This information may come from various common sense

considerations, even those apparently unrelated to the object’s shape. Surprisingly, these

consideration can often be informative enough to allow for complete image reconstruction.

We have modeled, studied and optimized the Gerchberg-Saxton reconstruction process

by first encoding an object (supplied in a form of a graphical image, e.g. a photo, or defined

analytically) into the correlation observable (43), and then processing the result following the

algorithm shown in Fig. 25. This simulation and analysis were implemented in the Python

programming language. A specialized software package was created for this purpose, whose

functional diagram is shown in Fig. 26.

FIG. 26: A diagram of the image encoding/recovering software package developed at JPL.
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The pristine image can be created by the CreatePng.py program which offers several

options for basic geometric shapes. Alternatively, the image can be taken as a picture

or photograph formatted into 16-bit gray scale png file. The image is passed on to the

G2image2.py program which generates the correlation observables C and C0 according to

formula (43). These observables are output both in graphic (16-bit gray scale png) and

double-precision data array formats. The program has options of assuming either Gaussian

or disk source, and introducing additive and/or multiplicative noise to the correlation ob-

servables. It also creates a log file where all relevant parameters of the system are recorded.

This file is used by the image-reconstruction programs.

The graphic observables are passed on to the Gerchberg-Saxton2d.py program, which

realizes the iterative process shown in Fig. 25. In order to make the image recovery process

more realistic, this program ignores the prior knowledge of the source shapes. Instead, it

relies on C0 as the sole description of the source. It does, however, requires the a priori

source shape information: Gaussian or disk. The images obtained from this program are

compared with the pristine image.

Similar functions are performed by the Gerchberg-Saxton3.py program, except that it

takes double-precision data arrays as C and C0 inputs. This array format closely matches

the potential experimental data, so the purpose of this program is to facilitate the transition

to the future experimental data analysis.

To handle this problem numerically, we introduce three reciprocal pairs of grids: a and ã

in the object plane, b and b̃ in the detection plane, and c and c̃ in the source plane. Each of

these grids is related to its reciprocal by a discrete Fourier transform of an N0 × N0 array,

e.g. a = 2π/(N0ã), etc. Furthermore, discretizing of (43) leads to the following natural

choice:

ã = kb/L and c̃ = kb/(L+ Ls). (94)

During the encoding step, we use Eq. (43) to generate correlation arrays C(ρi,j) and

C0(ρi,j) with and without the object, respectively. The arrays size is N0 × N0, where by

virtue of Eqs. (94) N0 = λL/(ab). These arrays represent the correlation measurement

results with a square array of detectors spaced at b/2. The arrays are then truncated

to the actual size of the detectors array Nd × Nd, which determines the new object grid

a′ = λL/(Ndb) and sets the resolution limit for our image reconstruction.

Then the Gerchberg-Saxton reconstruction takes place. Our algorithm follows the general
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guidelines [64, 65], however with a few important modifications. As we already mentioned,

we abandon our a priori analytical expression for T (~q) and restore it from the C0(ρi,j)

“measurement” in order to more closely simulate an experimental procedure. As an initial

guess for the object’s shape we take a Gaussian function whose width is consistent with the

total optical power absorbed by the object:

A(~ρ) = exp

{

− πρ2
√

C0(0)−
√

C(0)

}

. (95)

Following the Gerchberg-Saxton procedure we then compute A and replace its amplitude

by the “measurement”
√

C(ρi,j), while retaining its phase. After the inverse Fourier trans-

form this leads to a new estimate for A which we constrain based on sensible assumptions

regarding the object. These assumptions are the following:

1. A(~ρ) is real;

2. A(~ρ) = 0 for ρ > ρMax, which means that the object is not too large;

3. 0 ≤ A(~ρ) ≤ 1, which means that the object cannot absorb more than all, or less than

none, of the incident light;

4. A(~ρ) = 0 or 1, if the object is completely opaque.

The first constraint can be enforced by taking either the absolute value, or the real part

of A. Both methods work, as well as their alternation, converging to the same result. We

prefer the alternation method because it provides an indication of the successful image

reconstruction, as we will see in the following. It also sometimes leads to a slightly faster

convergence.

In the second constraint, the limit ρMax can be determined e.g. from low-resolution

observations [65], from supplementary knowledge such as the object mass, etc. In the absence

of such data, we set ρMax to six times the initial Gaussian width (95).

In the third constraint, imposing the upper limit on the reconstructed function is a new

requirement, specific to dark objects. In contrast, reconstructing a light source one cannot

be sure that it does not have very bright spots, so the upper limit is not applicable.

The last constraint is specific to completely opaque objects, in which case we are limited

to reconstructing only its contour. When applied, it supersedes the previous constraint. We
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have found that applying this constraint directly often disrupts the iteration process instead

of helping it, especially for the objects of complex shapes. A more subtle way of injecting

a large amount of information implied in the last constraint into the reconstruction process

is needed. Such a way can be facilitated by modifying the input-output transfer function

An−1(~ρ)→ An(~ρ) which relates the previous and the next images after all other constraints

have been applied. We have empirically studied several types of such transfer functions.

One particularly successful example is shown in Fig. 27. As the reconstruction iterations

progress, the darker pixels are gradually driven towards unity (opaque), and lighter pixels

towards zero (transparent).

FIG. 27: A transfer function (solid line) applied to the object’s absorption profile between

(n− 1)-th and n-th Gerchberg-Saxton iterations gradually drives it towards black-and-white solu-

tion. A dashed line represents an identity transfer function An = An−1.

The reconstruction process dynamics can be studied by monitoring the normalized vari-

ances

σn ≡
∑

i,j |An(ρi,j)−An−1(ρi,j)|2
∑

i,j |An−1(ρi,j)|2
, σ̃n ≡

∑

i,j |An(ρi,j)−An−1(ρi,j)|2
∑

i,j |An−1(ρi,j)|2
, (96)

whose square-roots give the fractional change of the object and its Fourier transform at the

n-th step. It is useful to separately calculate a part σ
(o)
n of σn which is due to the “opaque

object” constraint alone.

Following a long-standing tradition in the field of Ghost imaging [13], we demonstrate

the performance of our modified Gerchberg-Saxton algorithm using the initial letters of our
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institution, JPL, as a test object. This numeric simulation is carried out in a typical optical

lab settings. The object, which is shown in Fig. 28, was assumed to have 2 mm in length.

It is placed at L = Ls = 36 cm between the source and the detectors array. The array

has 1280×1024 pixels with 4.65µm spacing (hence, b = 9.3µm) to match parameters of

the actual CCD camera which was used in our experiment. The source is assumed to have

Gaussian distribution with Rs = 2 mm, radiating at λ = 532 nm.

FIG. 28: The test object and its computed shadow as would be seen by the detectors array.

Geometrical shadow of an object can be found as

I(~ρ) = 1− β2

πR2
s

∫

d2ξIs(β~ξ − (β − 1)~ρ)A(~ξ). (97)

In our case, this shadow is only some 14% deep, see Fig. 28. It is completely featureless and

is not useful for the image reconstruction.



65

The correlation function, on the other hand, has a rich structure which encodes the

object image. In Fig. 29 we plot C(ρi,j) on a logarithmic scale in order to highlight the weak

features. The outer green and inner red contour lines correspond to C(ρi,j)/C0(0) = 2−13

and C(ρi,j)/C0(0) = 2−12, respectively.

FIG. 29: A logarithmic plot of the correlation function C(ρi,j) reveals the structure which encodes

the shape of the object of interest. The solid contour lines correspond to C(ρi,j)/C0(0) = 2−12

(red) and C(ρi,j)/C0(0) = 2−13 (green).

We started by realizing a simple version of the Gerchberg-Saxton algorithm, with con-

straint 4 disabled by permanently setting the slope of the transfer function in Fig. 27 to

unity. The real part of the object function was taken when applying constraint 1. Represen-

tative images of a 200-iteration cycle are shown in Fig. 30. These images have been rotated

by 180◦ for convenience; the actual results of this particular run came out up side down,

which is a normal situation resulting from the Gerchberg-Saxton algorithm ambiguity.
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FIG. 30: The results of a simple image recovery algorithm. The step numbers are given in the low

left corner of each frame.

Variances (96) for this process are shown in Fig. 31. Their general behavior is similar

to the one observed [64] for luminous objects, when periods of rapid improvement were

alternating with periods of relative stagnation. Convergence of the process can be improved

if one alternates taking the real part of the image and its absolute value as the first image

constraint. The variances behavior and representative images corresponding to this scenario

are shown in Fig. 32. Here, the same simulated input data has been used, however the

second quality transition occurs sooner, and the final image is better. Notice that the steps

when the “absolute value” method was used in constraint 1 have larger variances than those

when the “real part” method was used.
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FIG. 31: Fractional change (given by square root of variances (96) ) of the test object’s image and

its Fourier transform in a simple image recovery corresponding to Fig. 30.

FIG. 32: Fractional change of the test object’s image and its Fourier transform in the alternating

algorithm; shown are images 40, 130 and 200.

So far we have not utilized our knowledge that the test object is in fact an opaque mask.

To take advantage of this information, we enable the “solid object” constraint. We start

incrementing the transfer function slope (see Fig. 27) by small steps as soon as both the

image and its Fourier transform’s evolution becomes stagnant, but will decrement it if either
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one of the variances (96) starts to grow. The results of such an adaptive Gerchberg-Saxton

algorithm with the same input data are shown in Fig. 33. Its realization leads to even faster

convergence with even better result. In fact, the image in Fig. 33 stops appreciably changing

already after some 125 iteration, at which point it looks practically indistinguishable from

the original.

FIG. 33: Left: fractional change of the test object’s image and its Fourier transform in the alter-

nating adaptive algorithm; shown are images 10, 75, 125 and 200. Right: the transfer function

slope.

Several interesting observations can be made regarding this result. First, the variances

oscillations due to alternating method of handling the complex-to-real conversion disappear

as the image improves. This indicates that the image becomes purely real and suggests

that with the adaptive algorithm, alternating the methods may be unnecessary. We have

confirmed it in a separate run using only the “Real” method which has produced equally

good result. Second, the image and its Fourier transform fractional variations become equal

when a high-quality image has been obtained and no further progress is achieved. This may

indicate that the process has gone into a loop where the object- and Fourier-space constraints

repeatedly reverse each other’s effect. Third, the largest part of the object variance is due to

the “opaque” constraint, which is consistent with the image solutions being predominantly

real and well confined in space.

An important question of practical intensity interferometry imaging is the algorithm

tolerance to additive and multiplicative noise. The additive noise is most important in
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the dark areas of Fig. 29 where the correlation observable C is small. This type of noise

can be suppressed by applying a threshold. Therefore the detrimental effect of this type

of noise is limited by such effect of the threshold. To study this effect we have repeated

the reconstruction with the same correlation data thresholded at C(ρi,j)/C0(0) = 2−13 and

C(ρi,j)/C0(0) = 2−12, which corresponds to discarding the data outside the green (outer)

and red (inner) contour lines in Fig. 29, respectively. The restored images are shown in

Fig. 34. These images cannot be improved with more iterations.

FIG. 34: The image reconstruction results with the threshold set at 2−13 (left) and 2−12 (right).

The multiplicative noise was introduced by multiplying each pixel value of C(ρi,j) and

C0(ρi,j) by a random Gaussian function with the mean value equal to unity and a variable

width σnoise. The reconstruction process failed at σnoise = 0.01C0(0) but converged to

a practically ideal image at σnoise = 0.001C0(0). In practical realizations of this image-

reconstruction algorithm, the realistic multiplicative noise level can be inferred from the

SNR analysis discussed in the previous Section.

To test our approach with an astronomical parameters set, we consider a hypothetical

Earth-size planet in the Oort cloud (1 ly from the Sun) which occultates Sirius (8.6 ly from

the Sun, 6µarc sec angular size). The planet would have 0.35µarc sec angular size and

would absorb some 0.34% of photon flux from Sirius. To make imaging more exciting we

provide the planet with a Saturn-like ring and a pair of moons 1000 km in diameter. The

central wavelength is assumed to be λ = 532 nm. The correlation measurements array is

assumed to consist of 2000 × 2000 data points on a square grid with 2 m period. This does

not mean that an array of 4 million detectors would be required. As we have seen before, a

modest-size array of cleverly placed detectors, such as shown in Fig. 8(a), can cover a lot of

reciprocal space and generate a very large correlation data array, such as shown in Fig. 8(b),

if all possible pairs of detectors are considered. In general, the resulting data array would

not be represented on a square grid. We assume the square grid in this simulation in order to
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accommodate our image reconstruction software. Obviously, modifying our software in such

a way as to handle the correlation data arrays of any shape would be among the first-priority

tasks in the follow-on research efforts that will be based on this NIAC project.

The reconstruction results are shown in Fig. 35. We see that already the first iteration

yields a nearly faithful image of the planet, but with four semi-transparent moons instead

of two solid ones, and a few other minor defects. It takes about 50 iterations to eliminate

the fake moons. At this point the iteration process saturates, meaning that continuing it

further does not noticeably change the image.

FIG. 35: The results of a planetary image reconstruction without noise. The step numbers are

given in the low left corner of each frame.

In the reconstruction shown in Fig. 35 we assumed noiseless data. Let us now model

a more realistic case when multiplicative noise is present. Following the analysis from the

previous Section, we notice that in the present geometry the factor β is no longer close

to unity: β = 1 + Ls/L ≈ 8.6. A square of this factor needs to multiply the right hand

side of Eq. (93) for the SNR. Substituting Ma = −1.47, F0 = 1800 Jy, λ = 290 nm and

γ = REarth/RSirius ≈ 5.37 × 10−3 into thereby modified equation, we find that SNR =



71

0.1 can be reached with a T = 2.8 hour measurement. We have used the noise-encoding

capability of our correlation simulating software to generate the noisy “measurement” re-

sult, and reconsructed the original image using the same set of parameters as before. The

reconstruction results are shown in Fig. 36.

FIG. 36: Image reconstruction results for the same system as in Fig. 35 but with strong multi-

plicative Gaussian noise present, SNR = 0.1. The step numbers are given in the low left corner

of each frame. Notice that the images in this Figure are inverted with respect to those in Fig. 35,

which is a normal situation in Gerchberg-Saxton algorithms.

Remarkably, a strong (ten times the signal!) noise present at every correlation data point

did not disrupt the image reconstruction. Its presence only lead to a persistent background

which nonetheless disappeared after some 50 iterations. This background may be attributed

to the high spatial frequency component of the noise, which affects the low-frequency part of

the objects, that is, its bulk size. This effect causes a problem which can be understood by

reviewing Eq. (95). This equation expresses the object bulk size as the difference between

the DC components of the correlation arrays with and without the object. For small objects

this difference is small, and in presence of the DC noise its fluctuation may be significant.
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To overcome this problem, for the image recovery from the noisy data we still used the

bulk size estimate obtained from the noiseless measurement. This “trick” is justified by

the following consideration: since the DC component of the correlation array is simply the

detected optical power, its measurement can be performed with a much greater precision by

an auxiliary apparatus relying only on the intensity measurement and not requiring spectral

filtering and high measurement bandwidth. Running into this difficulty and successfully

resolving it has been an important experience that will need to be taken into consideration

in a realistic mission design.

E. Experimental demonstration

To gain confidence in our theoretical estimations and numerical simulations, it is highly

desirable to compare them to actual experimental measurements. To reduce the equipment

costs, it has been decided to carry out the initial experimental tests with pseudo-thermal

light sources rather than with real thermal light sources. Pseudo-thermal light sources

are commonly realized by diffuse scattering of laser light by a rotating ground glass disk

[22, 46, 47] or by emulsions (e.g., milk [66]). Rotating a disk or allowing the suspended scat-

tering particles to experience Brownian motion one can observe a constantly (or discretely)

changing specular pattern. Each realization of this pattern has exponential distribution of

intensity. However multiple realizations of the specular patterns have Poissonian character.

It is easy to see that a composition of these two statistics leads to a statistic of single-mode

thermal light source. This source effective optical bandwidth is determined by the Doppler

broadening due to the scatterers motion, and can be made arbitrarily narrow. This allows

experimentalists to achieve the narrowband regime (see the SNR section for the definition)

even with slow detection technologies, such as e.g. CCD cameras. This reduces the cost of

the experiment by orders of magnitude, comparing with equal-size array of high-bandwidth

detectors, while allowing for the same series of conceptual experimental tests.

Our pseudo-thermal light source shown in Fig. 37 consisted of a 532 nm laser pointer

and a slowly rotating ground-glass disk. To achieve single-mode operation, the light has

been passed through a polarizer before the disk. Furthermore, to achieve Gaussian inten-

sity distribution of the source, the laser beam was spatially filtered by passing through a

single-mode optical fiber. In a later modification, the fiber was replaced by a mode cleaner
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FIG. 37: Pseudo-thermal light source with a 532 nm laser pointer, built for our experimental

demonstration.

consisting of two strong confocal lenses with a 20 micron pinhole in the focal spot, and an

extra polarizer with the same orientation was added after the scatterer disk to suppress

depolarization effects.

We have studied the statistical intensity distribution produced by our source using a

Thorlabs CCD camera DCU224M. This is an 8-bit monochrom 1280×1024 camera with

4.65×4.65 micron pixel size. The camera has advanced configuration control which allows for

adjusting the gamma-function and disabling the auto-gain and other “features” preventing

linear operation of most off-the-shelf CCD cameras. Prior to performing measurements with

our pseudo-thermal light source we verified the camera’s linear response by illuminating it

through a pair of polarizers and ensuring the cosine character of the camera’s response to

the angle between the polarizers. Hence the linear power response of our detector array with

discretized dynamic range extending from 0 to 255 was verified.

The pixel-value histograms observed with this camera and our pseudo-thermal light source

(in the stationary speckle field regime when the disk is not rotating) are shown in Fig. 38. In

these measurements we fixed the optical power and changed the camera exposure from 0.5 to
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FIG. 38: Histograms of the grayscale pixel values of the CCD camera illuminated by a pseudo-

thermal light source. Each data set is taken for 1000 frames with the same source power but

different exposure times: 0.5, 1, and 1.5 ms. The run average was 14.7, 28.3 and 41.0, respectively.

1.0 and 1.5 ms, which has lead to different array averages: 14.7, 28.3 and 41.0, respectively.

We observed that for low-average exposures the distribution remains exponential with a

very high accuracy. For higher-average exposures saturation effects at high pixel values are

evident. However their fractional weight is low, as one can see from Fig. 38. Nonetheless we

tried to carry the following measurements with low frame averages in order to minimize the

saturation effects.

It should be mentioned that averaging multiple speckle fields, we have not been able

to achieve the expected value of the Glauber correlation function g(2)(0) = 2. The values

we achieved were 1.89, 1.82, 1.84 for 0.5, 1.0 and 1.5 ms exposures, respectively. The

reasons for this discrepancy are not clear to us. Let us point out, however, that the single-

mode illumination is not a necessary condition for the thermal light intensity interferometry

imaging. In fact, the broadband regime discussed above is an extreme example of the

opposite situation when g(2)(0) − 1 ≪ 1. Therefore not reaching the theoretical value of

g(2)(0) = 2 should not hinder our experiment.

The next important step necessary before carrying out the experimental demonstration is
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to determine how much averaging of random speckle patterns is required in order to emulate

uniform illumination with a thermal light source. The necessity to perform a massive frame

averaging is the downside of using a pseudo-thermal light source instead of a real thermal

light source. To perform this analysis a specialized Labview program was written which

runs multiple averaging cycles with different numbers of frames. The frames are captured

at 15 fps and processed in real time. For each measurement cycle, the program computed

the correlation observable (10) as

G
(2)
AC(x, y) ≡ 〈I(x, y)I(−x,−y)〉 − 〈I(x, y)〉〈I(−x,−y)〉. (98)

In (98) the average is taken over the camera frames (instantaneous speckle patters), and

x, y denote the pixel position relative to the frame center. The program then excluded the

results from within a vicinity of the source speckle, i.e. such that
√

x2 + y2 < 6×(speckle
width), and computed the variance for the rest of the G

(2)
AC array. This variance is plotted

as a function of the number of averaged frames as shown in Fig. 39.

FIG. 39: A screen shot of the Labview program analyzing the variance of the background G
(2)
AC .

The graph shows the variance vs. the number of averaged frames (in thousands).

For a true thermal source this variance in Fig. 39 should approach zero. In our measure-

ment, however, we see that the averaging stops improving (or the improvement dramatically

slows down) after some 15,000 frames at the level of approximately 7×10−3. Considering the

run average 〈〈I(x, y)〉〉x,y ≈ 15 this corresponds to the normalized variance of approximately

3 × 10−5. Therefore the correlation observable measured with this technique will remain
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“grainy” at this level. Applying a threshold discussed in the context of Figs. 29 and 34 of

the previous Section will be necessary. This threshold will limit the image reconstruction

quality as illustrated in Fig. 34.

For the first attempt of 2D image reconstruction we used the object shown in Fig. 40(a).

This metal object, named “the object 1”, had the full height (the vertical size in Fig. 40)

of approximately 4 mm. It was suspended on four thin (few tens of microns in diameter)

Kevlar threads inside of a large frame placed at L = 191.1 cm from the CCD camera array

and Ls = 88.9 cm from the source. The source was a Gaussian light spot on a rotating

ground-glass disk (Thorlabs, part number DG20-220), of the radius Rs = 2.15 mm. The

object was centered on the line of sight, as evident from the shadow shown in Fig. 40(b).

Thus from the CCD camera perspective, the object fits entirely into the brightest part of

the source.

(a) (b)

FIG. 40: A photograph of the “object 1” used for the first 2D image reconstruction experiment(a)

and its shadow captured by the CCD camera (b).

The computed correlation observable G
(2)
AC for the first experiment parameters is shown

in Fig. 41(a), and the actual data is shown in Fig. 41(b). The agreement between the theory

and experiment is superficial at best. The most evident discrepancies are in the shape of

the central maximum and in the contrast of the side maxima. Moreover, the experimental

data contains classically impossible values G
(2)
AC < 0, outlined with a yellow contour. Inside

the red contour, the negative value drops below -5% of the peak value, reaching the value

of -18% of the peak near the centers of the red-bordered dark regions.
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(a) (b)

FIG. 41: The theoretical (a) and experimental (b) correlation observable G
(2)
AC for the “object 1”

from Fig. 40.

Clearly, these discrepancies far exceed the statistical variations. It is particularly puzzling

that the negative (classically impossible) correlation peaks correspond to positive simulated

peaks. One possible explanation could be that our “pseudo-thermal” light source does not

properly mimic the thermal light source, which may happen e.g. if the optical field illumi-

nating the object and the CCD camera retains significant spatial coherence. The presence

of a family of concentric circular interference fringes centered near the left edge of Fig. 40(b)

hints that this may be the case. In any event, while the theoretical correlation matrix plotted

in Fig. 41(a) is adequate for successful Gerchberg-Saxton image reconstruction, experimental

data from Fig. 41(b) does not lead to a successful reconstruction.

To investigate the failure of the object 1 imaging we decided to first study a one-

dimensional case which allows for easier numeric analysis. It also allows us to combine the

frames average with the average over the rows of pixels, i.e. 〈...〉y, and to collect high-quality

data faster. Therefore instead of (98) we construct the observable as

〈G(2)
AC(x)〉y = 〈〈I(x, y)I(−x, y)〉 − 〈I(x, y)〉〈I(−x, y)〉〉y. (99)

A diagram of our first 1D experiment is shown in Fig. 42. In this experiment we realized

one of the most traditional settings in interferometry: a double-slit mask. Analysis of this

experiment is very simple. We first notice that the speckle size produced by the source on
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FIG. 42: A diagram of a double-slit experiment with pseudo-thermal source of light and the

instantaneous speckle pattern observed in this experiment. The drawing on the pattern explains

how the additional pixel rows averaging is performed in 1-D measurements.

the mask is much smaller than the mask feature (the slit width). Therefore the mask itself

can be considered as a secondary pseudo-thermal source of light. Its correlation function in

the far field obeys the earlier-mentioned van Cittert-Zernike theorem, leading to

〈G(2)
AC〉y ∝ cos2

(

πb
x2 − x1

λL

)

sinc2
(

πa
x2 − x1

λL

)

, (100)

where a and b are the slits width and centers separation, respectively.

We have used Eq. (100) to compute the theoretically curve shown in Fig. 43(a). No free

fitting parameters have been used. However a careful collimation of the laser beam incident
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FIG. 43: Normalized correlation function (a) and intensity distribution (b) observed in experiment

shown in Fig. 42.
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onto the ground glass disk was required in order and to eliminate the first-order interference

fringes and to achieve relatively uniform intensity distribution shown in Fig. 43(b). These

fringes indicate the presence of the transverse coherence, which has been the prime suspect

for arising the negative G
(2)
AC regions in the experimental results from Fig. 41(b).

Perfect agreement between the theory and experiment in Fig. 43(a) validates our under-

standing of the physical principles behind the model. To also verify the “speckle of darkness”

concept which is directly relevant to the imaging of dark objects by intensity interferome-

try, we inverted the setup in Fig. 42 and used a double-wire mask instead of a double-slit

mask, as shown in Fig. 44. In this case, again, we do not observe any tell-tale shadow, see

Fig. 45(b), while the intensity correlation function is well resolved, see Fig. 45(a).

FIG. 44: A diagram of a double-wire experiment with pseudo-thermal light source.
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FIG. 45: Normalized correlation function (a) and intensity distribution (b) observed in experiment

shown in Fig. 44.
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In Fig. 45(a) we see a central maximum which is due to both the source and the mask,

and the secondary maxima that are solely due to the mask. The theoretical description

of this structure requires a source (Gaussian) term to be added to the right-hand side of

Eq. (100). The relative weights of these to terms need to be determined. It is important

to point out that using Eq. (43) for this purpose leads to the theoretical estimate of the

mask signature exceeding the experimental observation by a factor of several. Using a more

complex model of Eq. (41) accounting for the object and source convolution, however, leads

to the perfect consistency. This indicates that the assumption (42) is not sufficiently well

fulfilled in our experiment, which likely has been another reason for the failure of the first

2D imaging experiment. Using the source-convolution model of Eq. (41) for our double-wire

mask entailed, first, scaling the relative visibility of the mask signature by the square of the

local intensity of the source at the point found by drawing a line through the CCD camera

center and either one of the wires. Secondly, the rows averaging has to be done with a weight

which is found by a similar procedure.

The source-convolution model predicts a strong reduction of the object’s signature visibil-

ity as the object is moved away from the line of sight. Indeed, for our double-wire mask this

means that each wire is effectively illuminated with a different intensity. As with a normal

double-slit interferometer, this would lead to the loss of the fringes contrast. To verify this

conjecture, we shifted the double-wire mask by 1 mm in perpendicular to the wires direction.

Then instead of Fig. 45(a) we observe the intensity interference fringe shown in Fig. 46. A

dramatic reduction of the object’s fringes is evident.

The important role of the source intensity distribution when assumption (42) is only

weakly satisfied suggests that using a disk-like source with uniform intensity distribution is

better than using a Gaussian source. A disk also serves as a better model for stellar light

sources. To achieve this in the experiment, we included in our pseudo-thermal light source

a flat-top laser beam shaper, an instrument sold by the Edmunds Optics which is designed

specifically to focus a Gaussian beams into a uniform disk spot.
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FIG. 46: The same correlation function as in Fig. 45(b) after the mask has been shifted by 1 mm

across the line of sight.

With this beam shaper in place and projecting a light disk-shaped spot onto the rotating

diffuser, we proceeded to the second 2D imaging demonstration. In this experiment we used

a small image of the International Space Station printed on a glass plate, as shown in Fig. 47.

The mask size, source diameter and distances Ls and L are chosen such that the effective

source intensity is the same for any point of the mask (in other words, a line drawn through

the CCD camera center and any point of the mask always ends within the source disk).

FIG. 47: A diagram of a 2D imaging experiment with a disk-shaped pseudo-thermal light source.
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The correlation observable obtained after averaging of 1.3 million frames is shown in

Fig. 48(a). Fig. 48(b) shows a computed correlation observable. As an improvement from

the first 2D imaging experiment, now there is a strong similarity between Figs. 48(a) and

(b), which allows us to claim consistency between the theory and the experiment in the 2D

case. However, in spite of the massive averaging, the experimental data has background

(additive) noise at the level of 1%. In particular this noise leads to the classically impossible

values of G
(2)
AC < 0 marked red in Fig. 48(a).
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FIG. 48: Measured (a) and computed (b) correlation observables G
(2)
AC in the ISS imaging experi-

ment (see Fig. 47). Each contour line corresponds to 1% increment.

The computed noiseless G
(2)
AC shown in Fig. 48(b) is more than adequate for quick and

high-quality reconstruction of a 152×152-pixel ISS image which has approximately 40 micro

radians angular resolution, see Fig. 49 and Fig. 50. This resolution is determined by the

CCD array size and the distance L, as has been discussed in the previous Section.
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FIG. 49: The image reconstruction steps for the computed noiseless ISS correlation observable

shown in Figs. 48(b). Step numbers are given in the lower left corner of each frame.

(a) (b)

FIG. 50: The object variances (96) (a) and the transfer function slope (b) during the image

reconstruction process in Fig. 49.

However, having added to the computed correlation observable Gaussian noise at the

level of 1% to simulate the experimental data, we have not been able to recover the image.

Fig. 51 shows the result of image recovery attempt for the threshold set at 2% level (an

optimized value removing most of the noise but preserving most of useful signal). Other
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FIG. 51: A failed attempt to reconstruct the ISS image from the computed correlation observable

shown in Figs. 48(b) in presence of 1% additive noise with Gaussian distribution. The threshold

is set at 2%. Step numbers are given in the lower left corner of each frame.

threshold values likewise did not lead to success. It is not surprising therefore that recovering

the image from the experimental data shown in Fig. 48(a) also failed.

It should be noted that the background noise observed in this measurement exceeds the

expectations based on the averaging test reported in Fig. 39 by more than an order of

magnitude. To investigate this problem, we have carried out a reference measurement with

the ISS mask removed, averaging 1.1 million frames. The average intensity and correlation

observable from this measurement are shown in Fig. 52. The intensity distribution shows

some 10% contrast interference fringes due to the bandpass interference filter, polarizers and

other parallel surfaces. It also shows the shadows due to dust particles on the optics and

on the CCD array. These features however should not affect the correlation observable by

the virtue of its construction, see Eq. (98). The correlation observable in Fig. 52(b) features

the “grainy” structure at the same level as in Fig. 49(a). This structure has a characteristic

scale comparable to the source speckle size. This may indicate that one possible origin of

this noise is a stationary scatter which produces speckles that do not average during data

collection.
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(a) (b)

FIG. 52: The mean intensity distribution (a) and correlation observables (b) in the reference

measurement (with the ISS mask removed). The grey scale in (b) spans the range of 0 to 5%;

values below zero are given in blue, above 5% in red.

Further experimental research focused on demonstration of the 2D intensity interfero-

metric imaging with a pseudo-thermal light source should include solving the additive noise

problem as well as development of improved, noise-resilient image-reconstruction algorithms.

Developing such algorithms can leverage the techniques used in quantum optics for the quan-

tum state tomography [67].

This work will have to be continued outside the scope of this NIAC effort. It has been

included in the NASA-APRA proposal (Proposal Number: 13-APRA13-0032) submitted by

our team in May 2014 which is presently under consideration. The experimental part of this

3-year, $1M proposal goes beyond using the pseudo-thermal light source and includes lab

and field demonstrations with actual thermal light source and high-speed detectors. Using

a true thermal light source will not only advance the project towards its practical goals, but

also eliminate the averaging-related difficulties which have been proven significant. We have

already determined the suitable commercially available instrumentation, which includes a

Hamamatsu L233-55NB light source and 45 GHz bandwidth Newport 1014 detectors coupled

to Millitech LNA-22-02060 amplifiers and MXP-28-RFSFL balanced mixers to implement

high-speed signals multiplication. The integrated signals will be acquisitioned by a DAQ

board such as e.g. National Instruments model 781047.
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F. On observation of phase objects

Phase objects are the objects that refract light without absorbing it. Such hypothetical

objects provide a useful model for many astrophysical phenomena related to gravitational

lensing and microlensing [68, 69], and interstellar phase screens due to cold gas clouds

[38, 39]. They also may be useful for investigating remote atmospheric phenomena and for

other applications. Therefore there is a strong motivation for high-resolution optical imaging

of phase objects by means of intensity interferometry. However, best to our knowledge, this

problem has not been discussed yet.

One model phase object allowing for the fully analytical treatment in the framework of

Eqs. (22) and (23) is a thin lens. For an infinitely large thin lens characterized by the focal

distance f , (23) yields

S(~x, ~y) = e−
ik
2f

(ρ2o−ρ′2o ) = e−i k
f
~x~y. (101)

When this is substituted into (22) we see that the effect of such a lens can be absorbed into

γ → γf = k(1/L+ 1/Ls − 1/f). Then we quickly arrive to

G11 = G22 =
q2

πD2
= const|~ρ1,2 ,

G12(~ρ1, ~ρ2) =
q2

πD2
e

ik
2L

D−1
D

(ρ22−ρ21)e−(q/D)2| ~ρ2− ~ρ1|2 , (102)

g12(~ρ1, ~ρ2) = 1 + e−2(q/D)2| ~ρ2− ~ρ1|2 ,

where D ≡ L(1/L+1/Ls− 1/f) is a dimensionless “out-of-focus” factor. If the lens images

the source plane onto the detector plane, then D = 0 and the speckles become infinitely

small while the intensity goes to infinity. The former is a consequence of the thermal field

statistics (11). The latter is a consequence of the paraxial approximation leading to the

coordinate-independent intensities in (102).

On the other hand, if the source is in focus, D = 1, then the light propagates as a

collimated beam and the speckle size as well as the intensity in the detector plane will be

the same as in the lens plane. These two test cases validate our general approach to phase

objects.

For more complex phase objects we need to follow more advanced theoretical analysis

explained earlier in this Chapter. However the approximation (37) cannot describe a phase

object. We have to retain one more term in the power expansion series, which yields

T ∗(~ρ ′)T (~ρ ′′) = ei[φ(~ρ
′′)−φ(~ρ ′)] ≈ ei~ρ

′
d
~∇φ(~ρ ′

s ). (103)



87

In (103) we make our usual approximation that the speckle size the source casts on the

object is much smaller than the object feature, and define ~ρ ′
d ≡ ~ρ ′′− ~ρ ′, ~ρ ′

s ≡ (~ρ ′′+ ~ρ ′)/2.

For the correlation observable this leads to

〈E∗
1(~ρ1)E2(~ρ2)〉 =

e
ik
L
~ρs~ρd

(λsLLs)2

∫

O

d2ρ ′
s d

2ρ ′
d

∫

S

d2ρ Is(~ρ)

e
ik
Le

~ρ ′
s ~ρ ′

d ei~ρ
′

d
~∇φ(~ρ ′

s ) e−
ik
Ls

~ρ~ρ ′
d e−

ik
L
~ρs~ρ ′

d e−
ik
L
~ρd~ρ

′
s , (104)

where again ~ρd ≡ ~ρ2 − ~ρ1, ~ρs ≡ (~ρ2 + ~ρ1)/2. As before, we will assume that the correlation

function is measured symmetrically around the line of sight: ρs ≡ 0. In (104) the inner

integral is taken over the source and the outer integrals are taken over the object. Of the

latter, the d2ρ ′
d integral yields a 2-dimensional Dirac δ-function which, when integrated over

the source plane, shifts the argument of Is(~ρ). This yileds

C(~ρd) ≈ K

∣

∣

∣

∣

∫

d2ρ ′
s Is

[

β~ρ ′
s +

Ls

k
~∇φ(~ρ ′

s )

]

e−
ik
L
~ρd~ρ

′
s

∣

∣

∣

∣

2

. (105)

We recognize (105) as a Fourier-transform of the source intensity distribution with a

shifted argument, which can be viewed as a generalized van Cittert - Zernike theorem. For

a sufficiently smooth phase object it is reasonable to treat φ(~ρ ′
s ) as a polynomial with de-

creasing higher-order terms. Remarkably, the zeroth-order term is removed by the gradient:

the overall phase is not observable in this type of measurement, which is physically rea-

sonable. The linear phase term (such that may be produced by an optical wedge) yields a

constant argument shift in Is(~ρ) which amounts to an apparent shift of the object from the

line of sight, or equivalently, a phase shift of its Fourier transform. Since our observable is

phase-insensitive, this effect vanishes as well.

The next-order, quadratic, contribution leads to the already studied case of a thin lens

with a focal distance f . For such a lens ~∇φ(~ρ ′
s ) = −~ρ ′

s k/f , so it has the effect of linear

scaling of the intensity argument: β~ρ ′
s → (β − Ls/f)~ρ

′
s , which can be viewed as a change

in the effective propagation distance: Ls + L → Ls + L − LsL/f . In particular, when

1/L + 1/Ls = 1/f , this distance becomes zero. This of course corresponds to imaging

of the source onto the detection plane, in which case we recover our initial assumption of

δ-correlation of the thermal source field as has been shown earlier.

Analysis of the higher-order phase terms is less intuitive. However we can already see

that the problem of reconstructing a phase object can be reduced to recovering a source

intensity distribution from its Fourier transform absolute square, and then taking the inverse
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of the result in order to retrieve the object signature. The following example is designed to

demonstrate the first step, while the second step is intentionally made trivial.

Let the source have Gaussian intensity distribution Is(ρ) = exp(−ρ2/R2
s) with Rs =

√
0.1

cm. Consider a thin lens with a focal length f=11.36 cm centered on the line of sight

between the source and detectors array so that L = Ls = 50 cm. As a phase object, we take

a rectangular x = 0.118 cm by y = 0.25 cm piece of this lens centered at ∆x = 0.293 cm

from the line of sight, and remove the rest of the lens. Then, according to (105), the source

argument is linearly scaled within the rectangle, and unperturbed elsewhere. The resulting

modified intensity is shown in Fig. 53(a).

(a) (b)

FIG. 53: Numerically modeled intensity distribution of a Gaussian source modified by a rectangular

phase object (a) and its reconstruction by Gerchberg-Saxton algorithm after 5000 iterations (b).

Side of each image is 2 cm, array size 680 x 680 pixels.

Our phase object reconstruction algorithm is similar to the algorithm we used for the

absorbing objects, except that now we abandoned constraints 2 and 4, and set the upper limit

to the unperturbed intensity function rather than unity in constraint 3. This considerably

weakened our set of object constraints, and the image reconstruction took significantly

longer. The reconstruction result obtained after 5000 iterations is shown in Fig. 53 (b).

While the image turned out inverted, it has adequate fidelity.

In this example we assume that we have a priori knowledge that the object is a rectan-

gular piece of a thin positive lens. To characterize the phase object we therefore use the
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reconstructed source function IG(ρ), in the area G of the phase object (the dark rectangle

in Fig. 53) in the form IG(ρ) = exp(−[ρ(β − Ls/f)]
2/R2

s). We fit it to find f . The fitting

yields fout = 11.37 cm with the standard deviation σf = 0.19 cm, which is in remarkable

agreement with the input value f = 11.36 cm.

Though it may seem artificial, the example with a piece of lens will prove helpful in the

following analysis. We already mentioned that in general, finding the inverse function of

the source intensity Is(~ρ) after Gerchberg-Saxton reconstruction of this function would be

required. This can be done e.g. when the phase gradient is strong enough to distort the

source by more than its angular size, that is, when

Ds ≪
Ls

kβ

∣

∣

∣

~∇φ(~ρs)
∣

∣

∣

min
. (106)

In (106) the subscript min indicates the minimum absolute value of the phase gradient that

we wish to resolve. In this case we can treat Is(~ρ) as a δ-function, which makes the inversion

trivial:

~∇φ(~ρ) = −kβ
Ls

~ρ = −
(

1

Ls
+

1

L

)

k~ρ (107)

for the regions G of ~ρ where Is(~ρ) is a non-zero constant, and ~∇φ(~ρ) = 0 everywhere else.

It is easy to see that this corresponds to the region G “filled” with a lens centered on

the line of sight such that it would image the (point-like) source onto the detection plane:

1/f = 1/Ls + 1/L. This is the best estimate of the phase object that we can achieve with

the approximation of Eq. (103). Even though a linear phase gradient such as (107) is not

a suitable model e.g. for gravitational lenses, it is possible that this model can distinguish

single from multiple phase objects with high resolution.

Clearly, the study of phase objects reconstruction from intensity interferometry data

needs to be continued. One of open questions in this field is to what extent finding of the

inverse function is possible when the source is not too small or the phase gradient is not

too strong, that is, when inequality (106) is not strictly enforced. It may be possible to

leverage additional consideration, such as that the phase gradient function is smooth and

takes the smallest of possible values, to approximately invert the reconstructed Is(~ρ) and to

find ~∇φ(~ρ). This research has been proposed to JPL’s Research and Technical Development

Program as a topic area concept for FY 2015 funding, which is presently being evaluated.
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IV. DISSEMINATION AND OUTREACH

An important goal of NASA’s innovative research programs is to facilitate the transfer

of NASA technology and engage in partnerships with other government Agencies, industry,

and international entities to generate U.S. commercial activity and other public benefits.

Also, as a Federal Agency, NASA requires prompt public disclosure of the results of its

sponsored research to generate knowledge that benefits the nation. Thus, it is the NIAC’s

intent that all knowledge developed under its sponsorship be shared broadly by means of

publishing the research results in peer-reviewed, publicly accessible journals to the greatest

extent practical. In response to these requirements, we reported our research results in the

following peer-reviewed papers:

• Ghost Imaging of Space Objects, D.V. Strekalov, B.I. Erkmen and N. Yu, Journal of

Physics, Conf. Series, 414, 012037 (2013).

• Intensity interferometry for observation of dark objects, D.V. Strekalov, B.I. Erkmen

and Nan Yu, Phys. Rev. A 88, 053837 (2013).

• Imaging dark objects with intensity interferometry, D.V. Strekalov, I. Kulikov, and N.

Yu, Opt. Expr. 22, 12339-12348 (2014).

Our results have also been reported at the following conferences:

• Ghost imaging of space objects, D.V. Strekalov, B.I. Erkmen, and N. Yu, 21th In-

ternational Laser Physics Workshop, Calgary, Canada, July 23-27 (2012) (Invited

talk).

• On using intensity interferometry for feature identification and imaging of remote

objects, Baris I. Erkmen, Dmitry V. Strekalov, and Nan Yu, SPIE meeting, San Diego,

California, United States, August 251729 (2013).

• Intensity interferometry for imaging dark objects, Dmitry Strekalov, Baris Erkmen,

Igor Kulikov and Nan Yu, Workshop on Hanbury Brown and Twiss interferometry,

Nice Observatory (Nice, France), May 12-13 (2014) (Invited talk).

• Imaging Dark Objects by Intensity Interferometry, D.V. Strekalov, I.K. Kulikov and

N. Yu, 23-d International Laser Physics Workshop, Sofia, Bulgaria, July 14-18 (2014)

(Invited talk).
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Besides the regular conferences attendance, the PI was invited to deliver a lecture on

this research topic at Max Plank Institute for Physics of Light retreat in Ringberg castle in

October 2012, and in July 2014. As one indication of successful dissemination of the new

knowledge gained in this project, the PI has been asked to take a role of the Lead Guest

Editor and to organize a special issue of the Advances in Astronomy journal dedicated to

intensity interferometry. This activity is currently in progress.

At JPL, our research results have been reported at several Section-, Division- and Lab-

wide presentations and published in the JPL’s Interplanetary Network Progress Report

42-192, (February 15, 2013). A new IPN Report is currently being prepared. The inno-

vative technical solutions developed in the course of this research have been disclosed in

the following JPL’s Novel Technology Report NTR 49465, Intensity interferometry Image

recovery, submitted on February 12, 2014.

The NIAC program is viewed as a seedling program designed to validate a novel, revolu-

tionary concept and to develop it to a sufficient level to become attractive for other NASA

offices or for outside funding. Therefore a significant effort was made to secure the follow-on

funding. The above-mentioned JPL meetings were partly focused on this goal. In addition

to that, the following proposals have been submitted, see Table VI. Future proposal activity

is also planned.

Title Submitted Agency (program) $$ K Status

Cross-band Ghost Imaging

of Space Objects August 2014 JPL (CIF) 100 Under consideration

Intensity interferometry for

imaging dark objects in space May 2014 JPL (RTD Concept) 200 Under consideration

Intensity correlation for imaging

dark objects in space March 2014 NASA (APRA) 992 Under consideration

Imaging of Spacecraft by

Intensity Interferometry August 2013 NRO (DII) 450 Program cancelled

TABLE VI: List of proposals submitted for follow-on funding.
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V. CONCLUSION

To conclude this report, we would like to summarize that our “Ghost Imaging of Space

Objects” NIAC research effort was successful. As anticipated, its main return has been

the newly acquired knowledge and the understanding of the pathways that lead from this

knowledge to its applications in observational astronomy. During this research we came

across several fundamental insights that were not expected at the beginning. We came to

realize that the ghost imaging of dark objects using background thermal light can be treated

as a special case of Hanbury Brown and Twiss intensity interferometry in combination with

the Babinet’s principle for higher-order observables. Extensive recent work performed in

this field by other research groups worldwide might seem to detract from the conceptual

originality and novelty of our approach; but at the same time it serves as an encouraging

indication that the chosen approach is acknowledged in the broader science community as

promising. This newly found synergy, acknowledged in the CTA newsletter from May 2014

reporting on the Workshop on Hanbury Brown and Twiss interferometry in Nice, makes

us confident that our published and otherwise disseminated results will be integrated into

a larger-scale on-going research effort aimed at performing astronomy observations of both

bright and dark objects with unparalleled resolution.

While we are satisfied with acceptance of our results by the international research com-

munity as a contribution to the field of intensity interferometry as well as to the on-going

mission-oriented projects, we also have been aiming at receiving support to continue and

advance this research at JPL. Several proposals have been submitted in pursuit of this goal.

Three of them are still under consideration, and we expect to learn about the funding deci-

sions soon. These new projects would leverage the results of this NIAC study and extend it

along well-defined directions that have been discussed above.

Shifting the main paradigm of our approach towards intensity interferometry entailed

another important realization, that the actual imaging of dark objects, in a sense of mapping

the column optical density distribution, is possible by using known numerical techniques,

such as the Gerchberg-Saxton approach. This insight was also unanticipated in the beginning

and caused a shift of the research focus from the initial plan. While this focus shift has been

well-justified and fruitful, it has left several issues unexplored. Some of these issues, too, are

included in the future research proposals.
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First among such outstanding questions is the fundamental possibility and practical feasi-

bility of ghost imaging in the transmitted-scattered configuration, such as shown in Fig. 4(a)

and, in fact, on the title page of this Report. The study of this configuration has been deemed

to have a low priority because of the difficulties and cost of its practical realization. How-

ever this study is still interesting from the fundamental point of view because it goes beyond

the Hanbury Brown and Twiss measurement paradigm, and still may be feasible for the

near-space objects. In this context, it might be interesting to study the scattered-scattered

configuration, which completely eliminates the direct source light and therefore may feature

increased SNR.

Another question, or rather a series of connected questions, to be studied in the future

is related to other observables then the Glauber intensity correlation function (7) and its

variants. One such alternative comes from generalization of Eq.(7) for higher powers m

and n of the measured intensities. It has been shown [70] that this could lead to higher

contrast images but perhaps with a worse SNR. The optimization of the powers m and n

and discussion of the ensuing trade-offs is available in [43]. Applying this technique to our

imaging architecture may potentially allow us to further increase the imaging contrast and

background suppression. Another novel detection technique [47, 48] relies on measuring a

variance of the difference of two detectors signal, rather than on photo counts coincidences

(i.e., a product). Using correlation observables based on more than two detectors is yet

another intriguing possibility [49, 50] which may be useful for the phase retrieval task. Ob-

taining the “closure phase” between the three detection points could assist or even substitute

the numerically intensive and intrinsically ambiguous techniques such as Gerchberg-Saxton

reconstruction. These alternative detection techniques may offer interesting trade-offs in

terms of the resolution, SNR and instrument requirements, and therefore should be studied

as a part of future development of this technology. It is important to point out that the

analytical and numerical computations required for this study are going to be very similar

to those we performed here. Indeed, the part of the analysis that describes the optical

field propagation from the source to the detectors, and also includes the object’s model,

will be the same. This is the most extensive and complex part of the analysis. Therefore

it is indisputable that this research has successfully formed a theoretical foundation to the

follow-on effort. We are also confident that it has succeeded in sparking enough interest to

such follow-on study and technology development to make it imminent.
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